ORIGINAL PAPER

Diversity and pathogenicity of *Botryosphaeriaceae* species on forest trees in the north of Iran

Mohammad Kazemzadeh Chakusary¹ · Hamid Mohammadi¹ □ · Seyed Akbar Khodaparast²

Received: 11 October 2018 / Revised: 16 April 2019 / Accepted: 29 April 2019 / Published online: 8 May 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

From 2012 to 2015, several field surveys were conducted throughout forest areas in the north of Iran in order to determine the occurrence of species of Botryosphaeriaceae on forest trees. Fungal isolations were made from symptomatic branches of 20 tree genera including Acer, Alnus, Carpinus, Crataegus, Cupressus, Cydonia, Diospyros, Fagus, Fraxinus, Gleditsia, Mespilus, Parrotia, Pinus, Populus, Prunus, Pterocarya, Punica, Quercus, Ulmus and Zelkova, as well as fruiting bodies formed on the surface of woody debris. Morphological identification along with molecular analysis of the internal transcribed spacer region (ITS1-5.8S-ITS2) of the nuclear ribosomal DNA (rDNA) and a partial sequence of translation elongation factor $1-\alpha$ (tef-1 α) gene showed that at least nine species of Botryosphaeriaceae occur on forest trees in the north of Iran. These include Dothiorella sarmentorum, Dothiorella plurivora, Neofusicoccum parvum, Botryosphaeria dothidea, Neoscytalidium novaehollandiae, Diplodia seriata, Diplodia sapinea, Lasiodiplodia mahajangana and Diplodia intermedia. Pathogenicity tests were conducted for selected isolates from each species on six tree species (Mespilus germanica, Punica granatum, Parrotia persica, Alnus glutinosa, Quercus castaneifolia and Pterocarya fraxinifolia) under field conditions. Results of the pathogenicity tests showed a variation in lesion lengths (virulence) and re-isolation frequencies of inoculated species on branches of trees, Neoscytalidium novaehollandiae, B. dothidea and D. intermedia being the most virulence species. Based on host plant species, the majority of *Botryosphaeriaceae* species are new records. This is the first comprehensive study on the species identification, distribution and pathogenicity of *Botryosphaeriaceae* on forest trees in Iran. This is also the first report of *L. mahajangana* in this country.

Keywords Fungal pathogens \cdot ITS \cdot *tef*-1 α \cdot Trunk diseases \cdot Woody debris

Introduction

The majority of Iran's forests are found in the north around the Caspian coastal plain. Adequate rainfall and favorable climates have created a beautiful green landscape and dense forest trees in this area of Iran. Unfortunately, significant proportions of the northern forests have been destroyed due to human activities, climatic conditions, fire and plant

Communicated by Claus Bässler.

- ☐ Hamid Mohammadi hmohammadi@uk.ac.ir
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

diseases. In forest trees, various fungal taxa are known to cause trunk diseases worldwide. These include species of Botryosphaeriaceae Theiss. & Syd. (Swart and Wingfield 1991; Stanosz and Cummings Carlson 1996), Togniniaceae Réblová, L. Mostert, W. Gams and Crous. (Halliwell 1966; Hausner et al. 1992; Mostert et al. 2006; Réblová and Mostert 2007; Réblová 2011; Kazemzadeh Chakusary et al. 2017), Diatrypaceae Nitschke, Verh. Naturhist. (Davidson and Lorenz 1938; Hinds 1981, Jurc et al. 2006; Senanayake et al. 2015; Černý et al. 2016), Valsaceae Tul. & C. Tul. (Wang et al. 2013; Dar and Rai 2014; Zhu et al. 2018), Xylariaceae Tul. & C. Tul. (Jurc and Ogris 2006; Henriques et al. 2014; Luchi et al. 2015) and a diverse group of basidiomycetes (Ryvarden and Gilbertson 1993; Sinclair and Lyon 2005; Crockatt et al. 2008; Prieto-Recio et al. 2012). In recent years, several fungal trunk pathogens have been reported as the main destructive and threatening factors of forest trees in northern Iran. Biscogniauxia

mediterranea De Not. has been shown to be a damaging pathogen of Quercus castaneifolia C. A. Mey., Q. brantii Lindl. and Zelkova carpinifolia (Pall.) K. Koch trees in Iran (Mirabolfathy et al. 2011; Mirabolfathy 2013). The fungus has also been found causing charcoal disease on forest trees in other countries (Jurc and Ogris 2006; Nugent et al. 2005). According to Mohammadi et al. (2014), four species of Togniniaceae, namely Phaeoacremonium parasiticum (Ajello, Georg & C.J.K. Wang) W. Gams, Crous & M.J. Wingf., P. minimum Tul. and C. Tul., P. iranianum L. Mostert, Gräf., W. Gams & Crous and P. rubrigenum W. Gams, Crous & M.J. Wingf., and two species of Botryosphaeriaceae, Botryosphaeria dothidea (Moug. ex Fr) Ces. & De Not, and Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & Phillips, were associated with *Cupressus sempervirens* L. trunk diseases in Iran. During an investigation by Hashemi and Mohammadi (2016), some members of Togniniaceae, Botryosphaeriaceae and Diatrypaceae were isolated from willow and poplar trees in Iran. In a study considering the fungal trunk pathogens on forest trees in northern Iran, seven species of Togniniaceae, namely P. parasiticum, P. alvesii L. Mostert, Summerb., P. minimum, P. iranianum, P. scolyti L. Mostert, Summerb. & Crous, P. fraxinopennsylvanicum T.E. Hinds, and P. croatiense Essakhi, Mugnai, Surico & Crous, have been isolated and identified from various forest trees (Kazemzadeh Chakusary et al. 2017). In recent years, an extensive research effort has been concentrated on the role of *Botryosphaeriaceae* species in trunk diseases of native, ornamental and forest trees worldwide (Encinas 2001; Abdollahzadeh et al. 2009, 2013a; Alves et al. 2013; Jami et al. 2013; Pavlic-Zupanc et al. 2015). Various members of *Botryosphaeriaceae* are pathogenic fungi mostly of woody plants, including forest trees and shrubs worldwide (Slippers and Wingfield 2007; Slippers et al. 2009). Species of this family are predominantly associated with branch and trunk cankers, dieback as well as leaf yellowing and decline (Phillips 2000; Van Niekerk et al. 2004). This family consists of many well-known plant pathogens such as Lasiodiplodia, Neoscytalidium, Neofusicoccum, Diplodia, Dothiorella and Botryosphaeria species which have been reported from a wide range of plant species around the world (Phillips et al. 2013). Various species of *Botryosphaeriaceae* represent a growing threat to agricultural plants (Slippers et al. 2007; Van Niekerk et al. 2004), ornamental trees in urban areas (Begoude et al. 2010; Mayorquin et al. 2012; Hashemi and Mohammadi 2016; Linaldeddu et al. 2016; Hashemi et al. 2017) and forest ecosystem (Munck et al. 2017; Smahi et al. 2017; Zlatković et al. 2018). Some species of this family predominantly infect forest and ornamental trees worldwide. Diplodia sapinea shows a host preference mainly on Pinus species (Jankovský and Palovćiková 2003; Luchi et al. 2014; Adamson et al. 2015). Research shows that Diplodia corticola A.J.L. Phillips, A. Alves and J. Luque,

is predominantly associated with oak trees. This taxon has been reported from trunk and branches of Quercus suber L. and cankered branch of Q. ilex L. (Alves et al. 2004). It was found to be associated with branch cankers and tip dieback on landscape live oak (Q. virginiana) in Florida (Dreaden et al. 2011) and the same disease symptoms on Q. suber in Algeria (Smahi et al. 2017). This fungus documented as the cause of stem and branch cankers on white oak (Quercus alba L.) in USA (Reed et al. 2018), trunk cankers and dieback of canyon live oak (Quercus chrysolepis Liebm.) in California (Úrbez-Torres et al. 2010), holm oak decline in Italy (Linaldeddu et al. 2014), bleeding cankers on black oak (Quercus velutina Lam.) (Munck et al. 2017), canker and dieback of Quercus ilex L., Q. petraea (Matt.) Liebl and Q. suber in France (Linaldeddu et al. 2017) and mortality of northern red oak (Quercus rubra L.) in Maine (Aćimović et al. 2016). Sardiniella urbana Linaldeddu, A. Alves and A.J.L. Phillips, as a new species in *Botryosphaeriaceae* has recently been isolated from diseased European hackberry (Celtis australis L.) trees showing sunken cankers, dieback and collar rot and stem exudates in an urban environment on the island of Sardinia in Italy (Linaldeddu et al. 2016). There are only a few studies regarding the impact of Botryosphaeriaceae species on trunk diseases of ornamental and forest trees in Iran (Mohammadi et al. 2014; Hashemi et al. 2017). Therefore, the aims of this study were to identify the Botryosphaeriaceae species occurring on forest trees in the north of Iran (Guilan province), using morphological and molecular characteristics. Furthermore, the pathogenicity of identified species was tested on some forest trees in field trials.

Materials and methods

Sample collection, fungal isolation and morphological characterization

From October 2012 to May 2015, various genera of forest trees (*Acer, Alnus, Carpinus, Crataegus, Cupressus, Cydonia, Diospyros, Fagus, Fraxinus, Gleditsia, Mespilus, Parrotia, Pinus, Populus, Prunus, Pterocarya, Punica, Quercus, Ulmus* and Zelkova) in Guilan province (in the north of Iran) were surveyed with the aim of isolating and identifying fungal trunk pathogens on forest trees showing disease symptoms. Wood samples were collected from trunks and branches of various trees showing yellowing, branch or trunk canker, branch dieback, sparse foliage, gummosis or death as well as woody debris. Fungal isolations were made from the discolored tissues of affected trees, as well as from fruiting bodies formed on the woody debris. From each symptomatic sample, 10–15 pieces (3×3 mm) of wood segments were cut from the margin between necrotic and apparently healthy

tissue and placed onto malt extract agar (MEA: 2% malt extract, Merck, Darmstadt, Germany) supplemented with 100 mg/L streptomycin sulfate (MEAS). Isolations of fungi from wood debris were made directly from fruiting bodies (pycnidia) on MEA. In both cases, plates were incubated at 25 °C for 5–15 days. Pure cultures of *Botryosphaeriaceae*-like isolates were obtained by transferring single hyphal tips from the edge of colonies to fresh MEA plates.

Isolates were initially identified and grouped by comparing the main morphological and cultural characteristics (Phillips et al. 2013; Slippers et al. 2013). Pure isolates of each group were stimulated to produce fruiting body (pycnidia) by growing each isolate on water agar (Agar, 20 g l–1; Merck, Germany) containing 5–7 autoclaved segments of wood of trees (1.5 to 2 cm) or pine needles (Slippers et al. 2004). Plates were exposed to light with a 12-h photoperiod at 22-25 °C and examined for the formation of pycnidia, during an incubation period of 15-40 days. After sporulation, the main morphological characteristics of conidia (length and width, color, shape and presence or absence of septations) were observed and recorded (Slippers et al. 2004; Phillips 2006; Phillips et al. 2013). For each isolate, 40 to 50 conidia were measured and evaluated using a light microscope (BH2, Olympus Optical, Tokyo, Japan, at × 1000 magnification).

DNA isolation and amplification

Single hyphal tip of *Botryosphaeriaceae* isolates from each group was grown on 2% MEA at 25 °C for 8-10 days. Mycelial mat produced by each isolate was scraped directly from the medium and transferred to a cool mortar and mechanically disrupted by grinding to a fine powder using liquid nitrogen with a pestle. Total DNA was extracted using an AccuPrep Genomic DNA Extraction Kit (Bioneer, Daejeon, South Korea) following the manufacturer's instruction manual. Extracted DNA samples were visualized on 0.1% agarose gels (UltraPureTM Agarose; Invitrogen, Carlsbad, California, USA) stained with ethidium bromide, and were kept at -20 °C for the next process.

Identification of the isolates was confirmed by sequence analysis of the internal transcribed spacer (ITS) of the rDNA and the translation elongation factor 1-alpha (*tef*-1α) regions using primers ITS1/ITS4 (White et al. 1990) and EF1-728F/EF1-986R (Carbone and Kohn 1999), respectively. The polymerase chain reaction (PCR) was performed in a Techne TC-312 Thermal Cycler (Techne, Cambridge, UK) as previously described by Hashemi and Mohammadi (2016). PCR products were visualized under UV light on a 1% agarose gel (UltraPureTM Agarose, Invitrogen) containing ethidium bromide. A 100-bp ladder (Gene Ruler, TMDNA Ladder Mix, Fermentas) was used as a molecular weight marker. PCR products were purified and sequenced by Bioneer

Corporation (Daejeon, South Korea). All sequences were read and edited with BioEdit Sequence Alignment Editor v. 7.0.9.0 (Hall 2006). Edited sequences were run through the BLAST (Basic Local Alignment Search Tool, http://blast.ncbi.nlm.nih.gov/Blast.cgi) to determine basic identity of the isolates.

Phylogenetic analysis

ITS and tef-1α sequences of 62 isolates of Botryosphaeriaceae species obtained in this study were combined with the sequences of various Botryosphaeriaceae species from GenBank. Sequences of two isolates of Pseudofusicoccum stromaticum Mohali, Slippers. and M.J. Wingf. (CBS117448) and CBS117449) were added as out-groups. Sequences were aligned using MAFFT v. 7 (Katoh and Standley 2013). Alignments were checked, and manual adjustments were made where necessary. Phylogenetic information contained in indels (gaps) was incorporated into the phylogenetic analyses using simple indel coding as implemented by GapCoder (Young and Healy 2003). Phylogenetic analyses were carried out with PAUP for maximum parsimony (MP) analysis as described by Abdollahzadeh, et al. (2010). CI (tree length, consistency index), RI (retention index) and RC (rescaled consistency index) were calculated. Bootstrap support was estimated using 1000 replicates to assess the robustness of each clade. New sequences were deposited in GenBank (Table 1).

Pathogenicity trials and fungal re-isolations

The pathogenicity of the two isolates from each identified species was tested on branches of selected forest trees (12–15 years old) in the north of Iran. Six tree species, Punica granatum L., Alnus glutinosa (L.) Gaertn, Parrotia persica (DC.) C. A. Mey., Pterocarya fraxinifolia (Lam.) Spach., Mespilus germanica L., and Q. castaneifolia, were used for fungal inoculations. The region of each branch to be inoculated was surface-disinfested with 75% ethyl alcohol. A wound was made between two nodes of each branch using a cork borer of 4 mm diameter. Each wound was inoculated with a mycelial plug (4 mm in diameter) taken from the margin of an actively growing colony on MEA (10 days old) and then protected by moist cotton and wrapped immediately with a strip of Parafilm® (Pechiney Plastic Packaging, Menasha, USA). Five branches of six tree species per isolate were inoculated, and an equal number was also inoculated with sterile PDA plugs, which served as controls. The length of wood lesion, produced by inoculated isolates, was measured after two months, and re-isolations were done from the edges of discolored tissues on the treatment and control branches and placed on PDA. Petri dishes were incubated at 25 °C, and re-isolated fungi were identified based on colony

 Table 1
 Botryosphaeriaceae isolates used in the phylogenetic analyses (GenBank isolates are shown in bold face)

Isolates		Host	Location	GenBank ac numbers	ecession	References	
Species	Code			ITS	EF		
Dothiorella sarmen-	IRNHM-KZS1	Quercus castaneifolia	Iran	MG192331	MG192352	This study	
torum	IRNHM-KZS2	Quercus castaneifolia	Iran	_	_	This study	
	IRNHM-KZS3	Alnus glutinosa	Iran	MG192332	MG192353	This study	
	IRNHM-KZS4	Alnus glutinosa	Iran	_	_	This study	
	IRNHM-KZS5	Quercus castaneifolia	Iran	_	_	This study	
	IMI 63581b	Ulmus sp.	UK	AY573212	AY573235	Phillips et al. (2005)	
	CBS 115038	Malus pumila	The Netherlands	AY573206	AY573223	Phillips et al. (2005)	
Dothiorella plurivora	IRNHM-KZm1	Diospyros lotus	Iran	MG192341	MG192362	This study	
	IRNHM-KZm2	Diospyros lotus	Iran	_	_	This study	
	IRNHM-KZm3	Populus caspica	Iran	MG192342	MG192363	This study	
	IRNHM-KZm4	Populus caspica	Iran	_	_	This study	
	IRNHM-KZm5	Populus caspica	Iran	_	_	This study	
	IRNHM-KZM7	Diospyros lotus	Iran	MG198184	MG198171	This study	
	IRNHM-KZm8	Quercus castaneifolia	Iran	MG198185	MG198172	This study	
	IRNHM-KZm10	Alnus glutinosa	Iran	MG198186	MG198173	This study	
	CBS 117006	Vitis vinifera	Spain	AY905555	AY905562	Luque et al. (2005)	
Dothiorella americana	CBS 128309	Vitis vinifera	USA	HQ288218	HQ288262	Urbez-Torres et al. (2012)	
	CBS 128310	Vitis vinifera	USA	HQ288219	HQ288263	Urbez-Torres et al. (2012)	
Neofusicoccum parvum	IRNHM-KZP1	Alnus glutinosa	Iran	MG192322	MG192343	This study	
	IRNHM-KZP2	Alnus glutinosa	Iran	_	_	This study	
	IRNHM-KZP3	Parrotia persica	Iran	MG192323	MG192344	This study	
	IRNHM-KZP4	Parrotia persica	Iran	_	_	This study	
	IRNHM-KZP5	Parrotia persica	Iran	_	_	This study	
	IRNHM-KZP6	Carpinus betulus	Iran	MG192324	MG192345	This study	
	CBS:719.85	Populus nigra	New Zealand	AY236943	AY236888	Slippers et al. (2004)	
Botryosphaeria doth-	IRNHM-KZ5	Populus caspica	Iran	MG456721	MG456733	This study	
idea	IRNHM-KZ11	Prunus divaricata	Iran	MG198187	MG198174	This study	
	IRNHM-KZ27	Punica granatum	Iran	MG198188	MG198175	This study	
	IRNHM-KZ30	Crataegus pentagyna	Iran	MG198189	MG198176	This study	
	IRNHM-KZ39	Populus caspica	Iran	MG198190	MG198177	This study	
	IRNHM-KZ49	Populus caspica	Iran	MG198191	MG198178	This study	
	IRNHM-KZ52	Punica granatum	Iran		MG198179	This study	
Botryosphaeria doth-	IRNHM-KZ77	Parrotia persica	Iran		MG198180	This study	
idea	IRNHM-KZ78	Prunus divaricata	Iran		MG198181		
	IRNHM-KB168	Parrotia persica	Iran		MG198182	This study	
	IRNHM-KZ172	Ulmus carpinifolia	Iran		MG198183	This study	
	IRNHM-KB93	Populus caspica	Iran		MG456734	This study	
	CBS 110302	Vitis vinifera	Portugal	AY259092	AY573218	Alves et al. (2004)	
	CBS 115476	Prunus sp.	Switzerland	KF766151	AY236898	Slippers et al. (2013)	

 Table 1 (continued)

Isolates		Host	Location	GenBank accession numbers		References
Species	Code			ITS	EF	
Neoscytalidium novae-	IRNHM-KZN1	Pinus sp.	Iran	MG220373	MG220380	This study
hollandiae	IRNHM-KZN2	Crataegus pentagyna	Iran	MG220374	MG220381	This study
	IRNHM-KZN3	Carpinus betulus	Iran	MG220375	MG220382	This study
	IRNHM-KZN4	Fagus orientalis	Iran	MG220376	MG220383	This study
	IRNHM-KZN5	Alnus glutinosa	Iran	_	_	This study
	IRNHM-KZN6	Pinus eldarica	Iran	_	_	This study
	IRNHM-KZN7	Alnus glutinosa	Iran	_	_	This study
	IRNHM-KZN8	Crataegus pentagyna	Iran	_	_	This study
	CBS122610	Acacia synchronicia	Australia	EF585536	EF585578	Pavlic et al. (2008)
	CBS122071	Crotalaria medicag- inea	Australia	EF585540	EF585580	Pavlic et al. (2008)
Diplodia seriata	KZD1	Parrotia persica	Iran	MG192325	MG192346	This study
	KZD2	Acer cappadocicum	Iran	MG192326	MG192347	This study
	KZD3	Parrotia persica	Iran	MG192327	MG192348	This study
	KZD4	Zelkova carpinifolia	Iran	MG192328	MG192349	This study
	KZD5	Fraxinus excelsior	Iran	MG192329	MG192350	This study
	KZD6	Fagus orientalis	Iran	MG192330	MG192351	This study
	KZD7	Acer cappadocicum	Iran	_	_	This study
	KZD59	Fagus orientalis	Iran	-	_	This study
	CBS 112555	Vitis vinifera	Portugal	KF766161	AY573220	Alves et al. (2004)
	CBS 119049	Vitis sp.	Italy	DQ458889	DQ458874	Alves et al. (2006)
	CBS 134700	Prunus laurocerasus	Italy	KC869996	KC869998	Quaglia et al. (2014)
Diplodia intermedia	IRNHM-KZI1	Gleditsia caspica	Iran	MG220378	MG220385	This study
	IRNHM-KZI2	Fagus orientalis	Iran	MG220379	MG220386	This study
Diplodia intermedia	IRNHM-KZI3	_	Iran	_	_	This study
	CBS 124462	Malus sylvestris	Portugal	GQ923858	GQ923826	Phillips et al. (2012)
Diplodia sapinea	IRNHM-KZ400	Pinus eldarica	Iran	MG456720	MG456732	This study
	IRNHM-KZ4001	Pinus eldarica	Iran	_	-	This study
	CBS 393.84	Pinus nigra	The Netherlands	DQ458895	DQ458880	Alves et al. (2006)
	CBS 109725	Pinus patula	Indonesia	DQ458896	DQ458881	Phillips et al. (2008)
Lasiodiplodia	IRNHM-KZL1	Pterocarya fraxinifolia	Iran	MG192333	MG192354	This study
mahajangana	IRNHM-KZL2	Quercus castaneifolia	Iran	MG192334	MG192355	This study
	IRNHM-KZL3	Ulmus carpinifolia	Iran	MG192335	MG192356	This study
	IRNHM-KZL4	Zelkova carpinifolia	Iran	MG192336	MG192357	This study
	IRNHM-KZL5	Pterocarya fraxinifolia	Iran	MG192337	MG192358	This study
	IRNHM-KZL6	Quercus castaneifolia	Iran	MG192338	MG192359	This study
	IRNHM-KZL7	Quercus castaneifolia	Iran	_	-	This study
	IRNHM-KZL8	Pterocarya fraxinifolia	Iran	_	-	This study
	IRNHM-KZL9	Zelkova carpinifolia	Iran	MG192339	MG192360	This study
	IRNHM-KZL10	Ulmus carpinifolia	Iran	MG192340	MG192361	This study
	CBS 124927	Terminalia catappa	Madagascar	FJ900597	FJ900643	Begoude et al. (2010)
Dothiorella omnivora	CBS 188.87	Juglans regia	France	EU673316	EU673283	Phillips et al. (2008)
	CBS 242.51	_	Italy	EU673317	EU673284	Phillips et al. (2008)
	IRAN 1570C	-	Iran	KC898233	KC898216	Abdollahzadeh et al. (2014)
	IRAN 1573C	_	Iran	KC898232	KC898215	Abdollahzadeh et al. (2014)

 Table 1 (continued)

Isolates		Host Location		GenBank accession numbers		References	
Species	Code			ITS	EF		
Dothiorella semper- virentis	IRAN1581C	_	Iran	KC898237	KC898220	Abdollahzadeh et al. (2014)	
	IRAN1583C	-	Iran	KC898236	KC898219	Abdollahzadeh et al. (2014)	
Dothiorella parva	IRAN1579C	-	Iran	KC898234	KC898217	Abdollahzadeh et al. (2014)	
	IRAN1585C	-	Iran	KC898235	KC898218	Abdollahzadeh et al. (2014)	
Dothiorella iberica	CBS 115041	Quercus ilex	Spain	AY573202	AY573222	Phillips et al. (2005)	
	CBS 113188	Medicago sativa	South Africa	EU673318	EU673285	Phillips et al. (2008)	
$Dothiorella\ mangiferae$	CBS 500.72	Medicago sativa	South Africa	EU673318	EU673285	Phillips et al. (2008)	
Dothiorella mangif- ericola	CBS:124727	Mangifera indica	Iran	KC898221	KC898204	Yang et al. (2017)	
Dothiorella citricola	ICMP16828	Citrus sinensis	New Zealand	EU673323	EU673290	Phillips et al. (2008)	
Dothiorella westralis	CBS117007	Vitis vinifera	Spain	AY905556	KX464623	Yang et al. (2017)	
Dothorella viticola	CBS 117009	Vitis vinifera	Spain	KF766228	AY905559	Slippers et al. (2013)	
Neofusicoccum brasil- iense	CMM 1285	Mangifera indica	Brazil	JX513628	JX513608	Marques et al. (2013)	
Neofusicoccum corda- ticola	CBS 123634	Syzygium cordatum	South Africa	EU821898	EU821868	Pavlic et al. (2009)	
Neofusicoccum umdonicola	CBS 123645	Syzygium cordatum	South Africa	KF766206	KF766427	Slippers et al. (2013)	
Neofusicoccum kwam- bonambiense	CBS 123639	Syzygium cordatum	South Africa	EU821904	EU821874	Pavlic et al. (2009), Yang et al. (2017)	
Neofusicoccum ribis	CBS 115475	Ribes sp.	USA	AY236935	AY236877	_	
Neofusicoccum occulatum	CBS 128008	Eucalyptus grandis	Australia	EU301030	EU339509	-	
Botryosphaeria fabicerciana	CBS 127193	Eucalyptus sp.	China	HQ332197	HQ332213	Chen et al. (2011)	
Botryosphaeria fusis- pora	MFLUCC 10-0098	Entada sp.	Thailand	JX646789	JX646854	Liu et al. (2012)	
Botryosphaeria cortices	CBS 119047	Vaccinium corymbo- sum	USA	DQ299245	EU017539	Phillips et al. (2006)	
Botryosphaeria ramosa	CBS 122069	Eucalyptus camaldu- lensis	Australia	KF766168	EU144070	Pavlic et al. (2008)	
Botryosphaeria scharifii	CBS 124703	-	Iran	JQ772020	JQ772057	Abdollahzadeh et al. (2013b)	
Botryosphaeria agaves	CBS 133992	Agave sp.	Thailand	JX646790	JX646855	Liu et al. (2012)	
Neoscytalidium hya- linum	CBS 145.78	Homo sapiens	UK	KF531816	KF531795	Phillips et al. (2013)	
	CBS 251.49	Juglans regia	USA	KF531819	KF531797	Phillips et al. (2013)	
	CBS 499.66	Mangifera indica	Mali	KF531820	KF531798	Phillips et al. (2013)	
Diplodia pseudoseriata	CBS 124906	Blepharocalyx salici- folius	Uruguay	EU080927	EU863181	Pérez et al. (2010)	
Diplodia pseudoseriata	CBS124907	Pterocarpus ango- lensis	South Africa	FJ888478	FJ888446	-	
Diplodia alatafructa	CBS 124931	Pterocarpus ango- lensis	South Africa	FJ888461	J888445	Mehl et al. (2011)	
	CBS 124933	Pterocarpus ango- lensis	South Africa	FJ888478	FJ888446	Mehl et al. (2011)	
Diplodia scrobiculata	CBS 109944	Pinus greggii	Mexico	DQ458899	DQ458884	Alves et al. (2006)	

Table 1 (continued)

Isolates		Host	Host Location (ecession	References	
Species	Code			ITS	EF		
	CBS 113423	Pinus greggii	Mexico	DQ458900	DQ458885	Alves et al. (2006)	
Diplodia scrobiculata	CBS 118110	Pinus banksiana	USA	KF766160	KF766399	Slippers et al. (2013)	
Diplodia allocellula	CBS 130408	Acacia karroo	South Africa	JQ239397	JQ239384	Jami et al. (2013)	
	CBS 130410	Acacia karroo	South Africa	JQ239399	JQ239386	Jami et al. (2013)	
Diplodia rosulata	CBS 116470	Prunus africana	Ethiopia	EU430265	EU430267	Phillips et al. (2008)	
	CBS 116472	Prunus africana	Ethiopia	EU430266	EU430268	Phillips et al. (2008)	
Diplodia rosacearum	CB S141915	Eriobotrya japonica	Italy	KT956270	KU378605	Giambra et al. (2016)	
Lasiodiplodia exigua	CBS 137785	Retama raetam	Tunisia	KJ638317	KJ638336	Linaldeddu et al. (2015)	
Lasiodiplodia caating- uensis	CMM 1325	Citrus sinensis	Brazil	KT154760	KT008006	-	
Lasiodiplodia theo- bromae	CBS 164.96	fruit along coral reef coast	Papua New Guinea	AY640255	AY640258	Phillips et al. (2005)	
	CBS 111530	_	_	EF622074	EF622054	Alves et al. (2008)	
Lasiodiplodia brasil- iensis	CMM 4015	Mangifera indica	Brazil	JX464063	JX464049	Marques et al. (2013)	
Lasiodiplodia vitis	CBS 124060	Vitis vinifera	Italy	KX464148	KX464642	Yang et al. (2017)	
Lasiodiplodia viticola	UCD 2604MO	Vitis sp.	USA	HQ288228	HQ288270	Urbez-Torres et al. (2012)	
Lasiodiplodia iranensis	CBS 124710	Salvadora persica	Iran	GU945348	GU945336	Abdollahzadeh et al. (2010)	
	CBS 124711	-	Iran	GU945347	GU945335	Abdollahzadeh et al. (2010)	
Lasiodiplodia jatroph- icola	CMM 3610	Jatropha curcas	Brazil	KF234544	KF226690	Machado et al. (2014)	
Pseudofusicoccum	CBS 117448	Eucalyptus hybrid	Venezuela	AY693974	AY693975	Slippers et al. (2013)	
stromaticum	CBS 117449	Eucalyptus hybrid	Venezuela	DQ436935	DQ436936	Mohali et al. (2006)	

and conidial morphology. Recorded data were checked for normal distribution using the Shapiro–Wilk and Kolmogorov–Smirnov tests. Results were subjected to analysis of variance (ANOVA) using SAS v 9.1 (SAS Institute, Cary, NC, USA). The LSD test was used for comparison of treatment means at p < 0.05.

Results

Sample collection, fungal isolation and morphological characterization

In our study, 221 forest trees belonging to 20 species were surveyed and 765 wood samples were collected from trees showing yellowing, sparse foliage, branch and trunk canker, branch dieback, gummosis and death and various wood lesion types in cross sections. In total, 118 *Botryosphaeriaceae*-like isolates were obtained in this study. All isolates produced fruiting structures (pycnidia) and sporulated efficiently on pine needles or autoclaved

segments of wood of trees on WA media within 15 to 35 days. Isolates were separated into five main groups based on cultural characteristics and conidial morphology.

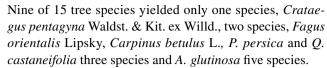
Twenty-two isolates (8 from infected wood tissues and 14 from wood debris) were classified in group one: Conidia in this group were sub-ovoid to ellipsoid ovoid, initially hyaline and aseptate, dark brown 1-septate after discharge from the conidiomata and showing longitudinal striations. All these isolates were identified as *Lasiodiplodia* spp.

Fourteen isolates (8 from infected wood tissues and 6 from wood debris) were placed in the second group. Isolates of this group produced colonies with gray to dark gray aerial mycelia. These isolates produced chains of arthroconidia with brown walls in the aerial mycelia. These characteristics were consistent with the description of *Neoscytalidium* spp.

Nineteen isolates (12 from trees and 7 from wood debris) were put in group three. Isolates of this group produced diplodia-like conidia. Dark brown conidia were observed within the pycnidia, while they were attached to the conidiogenous cells. All these isolates were identified as *Diplodia* spp.

Forty-five isolates of *Botryosphaeriaceae* were classified in group four. These isolates were obtained from wood discolored tissues (29 isolates) and wood debris (16 isolates). Conidia narrowly fusiform or irregularly fusiform. According to morphological characteristics, these isolates were identified as *Neofusicoccum* sp. or *Botryosphaeria* sp.

The last fungal group included 18 isolates (11 from infected trees and 7 from wood debris). Conidia in these isolates were initially hyaline and became dark brown and 1-septate within the pycnidia often while still attached to the conidiogenous cells. Based on these morphological features, these isolates were identified as *Dothiorella* spp.


Phylogenetic analysis

The combined ITS and $tef-1\alpha$ sequences alignment for in-group and two out-group isolates contained 1683 characters including alignment gaps, of which 734 characters were excluded, 580 were constant, 32 were variable and parsimony-uninformative and 337 were parsimony-informative. Gaps were treated as "missing." A heuristic search of these 321 parsimony-informative characters resulted in 24 most parsimonious trees of 278 steps (CI = 0.74, HI = 0.16, RI = 0.96) with the same overall topology. One of the MP trees is shown in Fig. 1 with MP bootstrap support values at the nodes. According to the phylogenetic analyses and combination of ITS and tef-1α sequences, Botryosphaeriaceae isolates obtained in the current study were placed in nine clades representing *Dothiorella sarmentorum* (5 isolates), Dothiorella plurivora (8 isolates), Neofusicoccum parvum (6 isolates), Botryosphaeria dothidea (12 isolates), Neoscytalidium novaehollandiae (8 isolates), Diplodia seriata (8 isolates), Diplodia sapinea (2 isolates), Lasiodiplodia mahajangana (10 isolates) and Diplodia intermedia (3 isolates).

Host, frequency and distribution of *Botryosphaeriaceae* species

From affected wood tissues

During this study, 20 species of trees were studied in the forest areas of Guilan Province in the north of Iran. In total, 118 *Botryosphaeriaceae*-like isolates were obtained from symptomatic trees and wood debris from various forest areas (Fig. 2). Of these, 68 isolates (57.6% of total isolates) were recovered from affected wood tissues of tree species in nine forest areas. *Botryosphaeriaceae* isolates were obtained from 15 tree species belonging to 13 families. Five species of woody hosts, *M. germanica, Cydonia oblonga* Mill., *Acer cappadocicum* Gled., *Ulmus carpinifolia* Gled. and *C. sempervirens*, did not yield any *Botryosphaeriaceae* isolate. According to Table 2, one to five different species of *Botryosphaeriaceae* per individual tree species were isolated.

Nine Botryosphaeriaceae species, L. mahajangana, N. novaehollandiae, D. seriata, B. dothidea, N. parvum, D. intermedia, Do. sarmentorum, Do. plurivora and D. sapinea, were isolated and identified from affected trees based on morphology, culture characteristics and DNA sequence analysis. Of these, B. dothidea was the most common Botry-osphaeriaceae species (33.8% of total isolates) followed by L. mahajangana, N. novaehollandiae and D. seriata (11.8% for each species), Do. sarmentorum (10.3%), N. parvum (8.8%), Do. plurivora (5.9%), D. intermedia (4.4%) and D. sapinea (1.4%).

Botryosphaeria dothidea was recovered from infected tissues of seven species of trees in four main regions including Manjil, Shaft, Masal and Rasht. Isolates of this species were obtained from P. granatum (21.8%), A. glutinosa (13.0%), C. betulus (17.4%), P. persica (17.4%), C. pentagyna (8.7%), Populus caspica Bornm. (13.0%) and Prunus divaricata Ledeb. subsp. divaricata (8.7%). Lasiodiplodia mahajangana was isolated from P. fraxinifolia (62.5%) in Asalem and Q. castaneifolia (37.5%) in Astara. Noescytalidium novaehollandiae was associated with C. betulus (50.0%) in Rasht and Masal, F. orientalis (12.5%) in Masal and A. glutinosa (37.5%) in Rasht and Shaft. Diplodia seriata was recovered at the frequency of 25% from each species of F. orientalis and Z. carpinifolia in Masal and Fraxinus excelsior L. and P. persica in Astara. Of the nine Botryosphaeriaceae species, seven isolates were identified as Do. sarmentorum. This species was obtained from Q. castaneifolia (71.4%) in Talesh and Rasht and A. glutinosa (28.6%) in Anzali. Neofusicoccum parvum occurred on three tree species, A. glutinosa (in Talesh), P. persica (in Saravan) and C. betulus (in Masal) with a frequency of 33.3, 50.0 and 16.7%, respectively. We obtained four isolates of Do. plurivora from Diospyros lotus L. (in Talesh), Q. castaneifolia (in Rasht) and A. glutinosa (in Anzali) with 25.0, 50.0 and 25.0%, respectively. Three isolates of D. intermedia were also detected from affected samples of Gleditsia caspica Desf. (66.7%) in Talesh and F. orientalis (33.3%) in Masal. In this work, only one isolate of D. sapinea was isolated from discolored wood tissues of Pinus eldarica Medw. in Rasht.

Botryosphaeriaceae on wood debris

Many pycnidia of *Botryosphaeriaceae* isolates were detected on the surface of the dead branches and debris collected in the seven forest regions visited. During this study, 50 isolates of *Botryosphaeriaceae* (42.4% total isolates) were obtained from wood debris of forest trees. Fruiting bodies of six *Botryosphaeriaceae* species

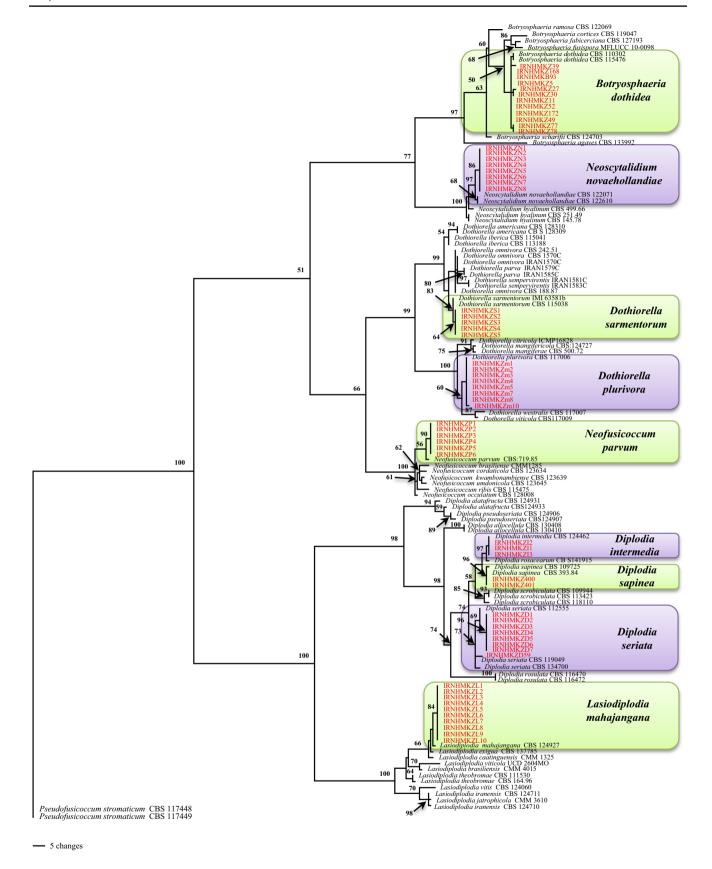
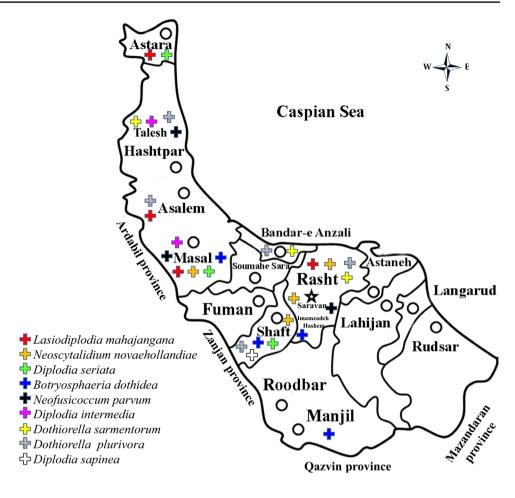



Fig. 1 One of the most parsimonious trees for *Botryosphaeriaceae* obtained from combined ITS and $tef-1\alpha$ sequence data. MP bootstrap values based on 1000 pseudoreplicates are given at the nodes. *Pseu*-

dofusicoccum stromaticum (CBS 117448, CBS 117449) was used as out-group and Iranian isolates obtained in this study shown in red color. Bar represents five changes

Fig. 2 Guilan Province map (northern Iran) indicating regions where forest trees were sampled and the species of *Botryosphaeriaceae* obtained from each site. The nine species of *Botryosphaeriaceae* are indicated by plus symbols with various colors

(B. dothidea, L. mahajangana, N. novaehollandiae, D. seriata, Do. plurivora and D. sapinea) were detected from wood debris of 12 tree species (Table 2). The highest percentages of *Botryosphaeriaceae* isolates (26.0%) were obtained from P. caspica debris, whereas the lowest recoveries (2.0%) were recorded for *P. eldarica* debris. Botryosphaeria dothidea with 16 (32.0%) and L. mahajangana with 14 (28.0%) isolates were the most frequent species. In this regard, D. sapinea with one isolate (2.0%) had the lowest isolation. Botryosphaeria dothidea and L. mahajangana were associated with wood debris of four tree species. Botryosphaeria dothidea was detected from wood debris of P. granatum, C. betulus, C. pentagyna and P. caspica, while the latter was observed on wood surface of Z. carpinifolia, U. carpinifolia, Q. castaneifolia and P. fraxinifolia. Three Botryosphaeriaceae species, i.e., N. novaehollandiae, D. seriata and Do. plurivora, were isolated from wood debris of two tree species. Neoscytalidium novaehollandiae was found on wood of P. eldarica and C. pentagyna. Diplodia seriata was isolated from P. persica and A. cappadocicum, and finally, Do. plurivora was associated with debris of D. lotus and P. caspica. Diplodia sapinea was only observed on the wood surface of P. eldarica. Based on our results, three species, Do.

sarmentorum, N. parvum and D. intermedia, were only isolated from infected wood tissues.

Pathogenicity tests

According to Table 3, all inoculations with selected isolates of Botryosphaeriaceae obtained in this study resulted in visible brown to black wood lesions upward and downward from the point of inoculation on branches after 2 months. No wood lesions were observed on control shoots inoculated with sterile PDA plugs. Our results showed a variation in wood lesion lengths and re-isolation frequencies of inoculated isolates. Length of wood lesions and re-isolation frequencies of inoculated isolates varied within and between species. Additionally, a small irregular or wedgeshaped necrosis was frequently observed in cross sections of all inoculated branches. Three species of B. dothidea, N. novaehollandiae and D. intermadia produced the longest lesions on inoculated branches, whereas two species of Diplodia, D. seriata and D. sapinea, produced the smallest lesions. Re-isolation percentages were between 12.5% (N. parvum and L. mahajangana) and 100% (B. dothidea and N. novaehollandiae) on inoculated tree species, and no Botryosphaeriaceae were obtained from control shoots.

 Table 2 Geographical origin and host plant species of Botryosphaeriaceae species in Guilan Province (northern Iran)

Species	Host		Number of the fungal isolates		Locality
	Scientific name	Family	Trees*	Wood debris*	
Botryosphaeria dothidea			23	16	
. 1	Punica granatum L. 1753	Punicaceae	5	2	Manjil
	Alnus glutinosa (L.) Gaertn, 1790	Betulaceae	3	0	Shaft
	Carpinus betulus L. 1753	Corylaceae	4	4	Masal
	Parrotia persica (D.C.) C. A. Meyer. 1831	Hammamelidaceae	4	0	Shaft (Jirdeh
	Crataegus pentagyna Waldst. & Kit. 1799	Rosaceae	2	2	Shaft
	Populus caspica Bornm. 1939	Salicaceae	3	8	Rasht (Imam zadeh Hashem)
	Prunus divaricata Ledeb. subsp. divaricata	Rosaceae	2	0	Shaft
Neofusicoccum parvum			6	0	
	Alnus glutinosa	Betulaceae	2	0	Talesh
	Parrotia persica	Hammamelidaceae	3	0	Saravan
	Carpinus betulus	Corylaceae	1	0	Masal
Lasiodiplodia mahajangana			8	14	
	Pterocarya fraxinifolia (Lam.) Spach. 1834	Juglandaceae	5	0	Asalem
	Quercus castaneifolia C. A. Mey. 1971	Fagaceae	3	0	Astara
	<i>Zelkova carpinifolia</i> (pall.) Dipp. 1892	Ulmaceae	0	3	Masal
	Ulmus carpinifolia Borkh. 1793	Ulmaceae	0	2	Astara
	Quercus castaneifolia	Fagaceae	0	5	Rasht
	Pterocarya fraxinifolia	Juglandaceae	0	4	Asalem
Neoscytalidium novaehollandiae			8	6	
	Carpinus betulus	Corylaceae	4	0	Rasht, Masal
	Fagus orientalis Lipsky. 1898	Fagaceae	1	0	Masal
	Alnus glutinosa	Betulaceae	3	0	Rasht, Shaft
	Pinus eldarica Medw. 1902	Pinaceae	0	2	Saravan
	Crataegus pentagyna	Rosaceae	0	4	Shaft (Jirfeh)
Diplodia seriata			8	6	
	Fagus orientalis	Fagaceae	2	0	Masal
	Fraxinus excelsior L. 1753	Oleaceae	2	0	Astara
	Zelkova carpinifolia	Ulmaceae	2	0	Masal
	Parrotia persica	Hammamelidaceae	2	0	Astara
	Parrotia persica	Hammamelidaceae	0	2	Shaft
	Acer cappadocicum Gled. 1784	Aceraceae	0	4	Shaft
Diplodia intermedia			3	0	
	Gleditsia caspica Desf. 1809	Leguminosae/Caesalpinaceae	2	0	Talesh
	Fagus orientalis	Fagaceae	1	0	Masal
Dothiorella sarmentorum			7	0	
	Quercus castaneifolia	Fagaceae	2	0	Talesh
	Quercus castaneifolia	Fagaceae	3	0	Rasht
	Alnus glutinosa	Betulaceae	2	0	Anzali

Table 2 (continued)

Species	Host	St Number of the fu isolates		the fungal	Locality
	Scientific name	Family	Trees*	Wood debris*	
Dothiorella plurivora			4	7	
	Diospyros lotus L. 1753	Ebenaceae	1	0	Talesh
	Quercus castaneifolia	Fagaceae	2	0	Rasht
	Alnus glutinosa	Betulaceae	1	0	Anzali
	Diospyros lotus	Ebenaceae	0	2	Asalem
	Populus caspica	Salicaceae	0	5	Shaft
Diplodia sapinea			1	1	
	Pinus eldarica	Pinaceae	0	1	Shaft
	Pinus eldarica	Pinaceae	1	0	Rasht
Nine Botryosphaeriaceae species	17 tree species	13 families	68 isolates	50 isolates	9 main area

^{*} Bold numbers in columns represent the total isolates of each species obtained from trees or wood debris

On P. granatum, B. dothidea (IRNHM-KZ39) produced the longest lesions (135.00 mm) and was the most virulent species on this host. On this host, D. seriata (IRNHM-KZD5) caused the smallest lesions (13.00 mm) that were not significantly different from the control (5.00 mm) and could therefore be regarded as nonpathogenic on this tree. Re-isolation percentages were between 12.5% (N. parvum, isolate IRNHM-KZP1) and 100% (N. novaehollandiae, isolate IRNHM-KZN1) on P. granatum. On A. glutinosa, the average length of wood discoloration caused by all Botryosphaeriaceae isolates was significantly different from that occurring in the control treatment. On inoculated shoots of A. glutinosa, N. novaehollandiae (88.33 mm) caused the longest lesions and was the most virulent isolate of Botryosphaeriaceae on shoots of this tree. Diplodia sapinea (IRNHM-KZ400) was the less aggressive Botryosphaeriaceae species on this woody plant; however, produced lesions by this isolate (17.33 mm) were significantly different from the controls (4.33 mm). The lowest and highest percentage recoveries were between 25% (L. mahajangana isolate IRNHM-KZL10) and 83.3% (D. seriata isolate IRNHM-KZD5) on A. glutinosa, respectively. Botryosphaeria dothidea (isolate IRNHM-KZ39, 120.0 mm) and N. novaehollandiae (isolate IRNHM-KZN1, 116.33 mm) were the most aggressive isolates on P. fraxinifolia and produced lesions that are significantly different from the other isolates and controls (5.33 mm), while *D. seriata* (IRNHM-KZD5) gave the shortest lesions (16.33 mm) on inoculated shoot of this woody plant and there was no significant difference between the length of lesions produced by this isolate and controls. The highest percentage recovery (83.3%) was recorded for N. novaehollandiae (IRNHM-KZN1), D. intermedia (IRNHM-KZI1) and D. sapinea (IRNHM-KZ400), while the lowest (33.3%) was noted for *Do. plurivora* (IRNHM-KZm1), *L.*

mahajangana (IRNHM-KZL10) and D. seriata (IRNHM-KZD5). On P. persica, two isolates of N. novaehollandiae, that is, IRNHM-KZN3 (mean lesion length = 76.00 mm) and IRNHM-KZN1 (mean lesion length = 72.00 mm), gave the longest wood lesions and there was no significant difference between lesion lengths caused by these two species. Lesions caused by two isolates of D. seriata (IRNHM-KZD2 and IRNHM-KZD5) were the smallest (10.00 mm and 17.33 mm) among the Botryosphaeriaceae species tested, and there was no significant difference between length of lesions produced by these isolates and control treatments (4.00 mm). The frequency of inoculated isolates varied from 25.0% (D. sarmentorum isolate, IRNHM-KZS3) to 100% (B. dothidea, isolate IRNHM-KZ5) on this tree. One isolate of N. novaehollandiae (IRNHM-KZN1) again caused the longest lesions and was the most virulent species of Botryosphaeriaceae on shoots of M. germanica. Diplodia seriata (IRNHM-KZD2) produced lesions of 9.67 mm, shorter than the other inoculated isolates on M. germanica shoots. Isolates were re-isolated from inoculated shoots of M. germanica in the range of 25.0% (D. sapinea, isolate KZ4001 and D. seriata, isolate IRNHM-KZD2) to 75.0% (N. novaehollandiae, isolate IRNHM-KZN3). On Q. castaneifolia shoots, one isolate of D. intermedia (IRNHM-KZI1) produced the longest lesions (mean lesion length = 125.00 mm) and displayed the highest level of pathogenicity. One isolate of D. seriata (IRNHM-KZD5) included in the pathogenicity tests produced the shortest lesions (mean lesion length = 19.67 mm) that were not statistically different from those of the uninoculated control (7.33 mm). Reisolation of the inoculated isolates succeeded in the range of 12.5% (L. mahajangana isolate IRNHM-KZL10) to 83.3% (N. novaehollandiae, isolate IRNHM-KZN3 and D. intermedia, isolate IRNHM-KZI2) on shoots of this host.

Table 3 Mean lesion length and re-isolation frequencies of Botryosphaeriaceae species inoculated onto forest tree shoots in a pathogenicity trial

Isolates		Original host	Mean lesion length (mm) and re-isolation frequency % in parentheses					
Species	Cod (IRNHM-)		Punica gra- natum	Alnus gluti- nosa	Pterocarya fraxinifolia	Parrotia persica	Mespilus germanica	Quercus casta- neifolia
Do. plurivora	KZm1	Diospyros lotus	24.67 IJK (83.3)	33.67 GHI (58.3)	41.33 GH (33.3)	30.67 EFG (66.6)	31.00 FGHI (50.0)	42.67 GHI (25.0)
	KZm3	Populus caspica	27.33 HIJK (37.5)	33.67 GHI (50.0)	32.00 GHI (58.3)	36.00 DEF (66.6)	32.67 FGH (50.0)	31.33 HIJ (33.3)
N. novaehol- landiae	KZN1	Pinus sp.	75.33 BC (100.0)	88.33 A (75.0)	116.33 A (83.3)	72.00 A (50.0)	88.33 A (66.6)	118.00 ABC (33.3)
	KZN3	Carpinus betulus	68.00 CDE (50.0)	80.0 AB (58.3)	107 ABC (66.6)	76.00 A (50.0)	81.67 AB (75.0)	120.67 AB (83.3)
N. parvum	KZP1	Alnus gluti- nosa	48.67 EFGH (12.5)	58.33 DE (66.6)	49.67 FG (75.0)	54.00 BC (66.6)	62.67 BC (37.5)	77.67 DEF (25.0)
	KZP3	Parrotia persica	46.00 EFGHI (37.5)	50.67 EF (75.0)	34.67 GHI (66.6)	54.67 BC (58.3)	56.67 CD (50.0)	65.33 EFG (66.6)
B. dothidea	KZ5	Populus caspica**	107.00 B (66.6)	45.67 FG (58.3)	98.33 ABCD (66.6)	55.00 AB (100.0)	37.00 EFG (66.6)	97.67 BCD (50.0)
	KZ39	Populus caspica	135.00 A (66.6)	55.00 DEF (58.3)	120.00 A (75.0)	40.37 CDE (75.0)	13.67 HIJ (66.6)	116.33 ABC (66.6)
D. intermedia	KZI1	Gleditsia caspica	60.00 DEF (66.6)	21.33 J (50.0)	110.00 AB (83.3)	65.67 AB (58.3)	76.67 AB (58.3)	125.00 A (66.6)
	KZI2	Fagus orien- talis	43.33 FGHI (50.0)	35.67 GH (58.3)	87.33 CDE (75.0)	48.00 CD (50.0)	64.33 BC (37.5)	78.00 DEF (83.3)
L. mahajan- gana	KZL2	Quercus cas- taneifolia	106.67 B (50.0)	61.67 CDE (50.0)	113.33 A (58.3)	47.00 CD (66.6)	53.00 CDE (58.3)	93.67 CD (33.3)
	KZL10	Ulmus carpinifolia	93.33 C (37.5)	67.00 CD (25.0)	90.33 BCDE (33.3)	42.33 CDE (33.3)	50.00 CDEF (66.6)	87.00 DE (12.5)
D. sapinea	KZ400	Pinus eldarica**	33.33 GHIJ (75.0)	17.33 J (75.0)	113.33 A (83.3)	33.33 DEF (58.3)	11.67 IJ (66.6)	61.67 EFG (75.0)
	KZ4001	Pinus eldarica	28.00 HIJK (66.6)	19.67 J (50.0)	83.00 DE (66.6)	28.33 EFG (58.3)	20.67 GHIJ (25.0)	34.33 HI (33.3)
Do. sarmen- torum	KZS1	Quercus cas- taneifolia	46.33 EFGHI (75.0)	52.67 EF (66.6)	47.67 FG (50.0)	24.67 FGH (37.5)	20.67 GHIJ (58.3)	56.00 FGH (25.0)
	KZS3	Alnus gluti- nosa	55.33 DEFG (50.0)	71.00 B (37.5)	69.67 EF (50.0)	23.33 FGH (25.0)	38.67 DEFG (37.5)	71.33 DEF (25.0)
D. seriata	KZD2	Acer cappa- docicum	23.00 IJK (37.5)	28.67 HIJ (37.5)	23.33 HIJ (50.0)	10.00 HI (58.3)	9.67 J (25.0)	39.33 GHI (25.0)
	KZD5	Fraxinus excelsior	13.00 JK (33.3)	22.33 IJ (83.3)	16.33 IJ (33.3)	17.33 GHI (37.5)	12.00 IJ (66.6)	19.67 IJ (33.3)
PDA plug (control)			5.00 K (0.0)	4.33 K (0.0)	5.33 J (0.0)	4.00 I (0.0)	5.33 J (0.0)	7.33 J (0.0)
LSD (p < 0.05)			23.655	12.063	22.1	1 14.873	19.531	26.882

Different letters in bold face indicate significant differences only within a column at p = 0.05

Discussion

This work is part of a larger effort to study the diversity of fungal trunk pathogens associated with various forest trees in the north of Iran. Nine *Botryosphaeriaceae* species were isolated and identified from various plant tissue types and wood debris of forest trees. These include *B. dothidea*, *L. mahajangana*, *N. novaehollandiae*, *N. parvum*, *D.*

seriata, D. sapinea, D. intermedia, Do. sarmentorum and Do. plurivora. Of these, six species (L. mahajangana, N. novaehollandiae, D. seriata, B. dothidea, Do. plurivora and D. sapinea) were recovered from both infected wood tissues of various forest trees and wood debris, while three species (Do. sarmentorum, N. parvum and D. intermedia) were only associated with affected wood tissues of trees. The most abundant species of the Botryosphaeriaceae

^{**} Isolates obtained from wood debris

in the trees sampled was B. dothidea, which represented 33.8% of the total isolates associated with affected wood tissues. This fungus as one of the most common species of Botryosphaeriaceae has been reported from hundreds of plant species worldwide (Phillips et al. 2013). The current study has confirmed this, by isolating B. dothidea from seven tree species in six families, P. granatum, A. glutinosa, C. betulus, P. persica, C. pentagyna, P. caspica and P. divaricata subsp. divaricata. Sixteen isolates of this species were also isolated from surface of wood debris of P. granatum, C. betulus, C. pentagyna and P. caspica. This pathogen has previously been found on some forest and ornamental tree species such as Juniperus communis L., Cotinus coggygria Scop. (Piškur et al. 2011; Pavlic-Zupanc et al. 2015), Pseudotsuga menziesii (Mirb.) Franco, Sequoia sempervirens (D. Don) Endl. (Zlatkovic' et al. 2016), Chamaecyparis sp., Pinus spp. and Sequoiadendron giganteum (Lindl.) J. Buchholz. (Smith and Stanosz 2001; Flowers et al. 2003). Botryosphaeria dothidea has also been isolated from various forest trees including Juniperus communis L., Populus nigra L., Fagus sp., Picea sp., Ouercus sp., Rubus sp., Acer sp. and Salix sp. in Iran (Abdollahzadeh et al. 2013b). It was thus interesting that in the present study, the fungus was found for the first time associated with P. granatum, A. glutinosa, C. betulus, P. divaricata subsp. divaricata, P. caspica, P. persica and C. pentagyna.

Three species of Diplodia, D. seriata, D. intermedia and D. sapinea were obtained from various forest trees in this study. Diplodia spp. as an important group of plant pathogens can cause various disease symptoms such as dieback, blight, canker and rot diseases on numerous plants (Lazzizera et al. 2008, Linaldeddu et al. 2011). A number of species of this genus have been previously recorded from forest and ornamental trees worldwide (Alves et al. 2004; Pérez et al. 2010; Linaldeddu et al. 2013; Phillips et al. 2013). Diplodia seriata was found associated with five tree species in the current study. These include F. orientalis, F. excelsior, Z. carpinifolia, P. persica and A. cappadocicum. This fungus is also regarded as a generalist species of Botryosphaeriaceae and has been recorded on more than 250 plant hosts (Phillips et al. 2013, Dissanayake et al. 2016). This species has been found on some forest and ornamental trees, Pinus nigra J.F. Arnold (Flowers et al. 2003), P. glauca, Abies grandis (Douglas ex D.Don) Lindl., P. menziesii, Picea abies (L.) Karst., Cedrus sp. (De Wet et al. 2008), Chamaecyparis lawsoniana (Murr.) Parl., Thuja plicata Donn. ex D. Don. (Alves et al. 2013), Cedrus atlantica (Endl.) Manetti ex Carrière., F. excelsior, Chamaecyparis pisifera (Sieb. & Zucc.) Endl. and *Ligustrum vulgare* L. (Zlatkovic´ et al. 2016). Diplodia seriata previously was isolated and reported from Z. carpinifolia with canker symptoms (Mirabolfathy 2013) and Salix alba L. (Hashemi and Mohammadi 2016) in Iran. Therefore, in this study we report this species from two novel woody hosts, *F. orientalis* and *P. persica*.

Only one isolate of D. sapinea was obtained from affected wood tissues of pine tree (P. eldarica) in this work, confirming that this species is more specific in pine trees. More than 150 host plants (mostly conifers) are reported for D. sapinea (Farr and Rossman 2013). This fungus is a well-known latent pathogen of pine trees in various countries of the world (Phillips et al. 2013). This pathogen has been found to cause needle and shoot blight, blue stain of the sapwood, branch and trunk cankers, dieback and tree death (Phillips et al. 2013). Diplodia sapinea has been isolated from 33 Pinus species (Punithalingam and Waterston 1970; Gibson 1979; Palmer et al. 1987; Phillips et al. 2013). In addition to the *Pinus* spp., other forest trees are also referred to as the host of this pathogen. These include Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. (white fir), C. atlantica, C. deodara, C. libani, Picea omorika (Pančić) Purk., P. abies, P. pungens, Thuja occidentalis L., C. sempervirens, Juniperus virginiana L., P. nigra, P. sylvestris, P. pinea, P. pinaster, P. halepensis, P. radiata, P. menziesii, Juniperus horizontalis Moench., Ch. lawsoniana, Fagus sylvatica L. (Karadžić and Stojadinović, 1988; Milijašević, 2003, 2009; Zlatković et al. 2016). In this work, only one isolate of D. sapinea was isolated from wood debris of *P. eldarica* (in Shaft).

Our study revealed three *D. intermedia* isolates from two different forest tree species. *Diplodia intermedia* was originally described from dead twigs of *Malus sylvestris* L. and *Cydonia* sp. in Portugal and an unknown woody plant in Iran (Phillips et al. 2012). This fungus has also been documented on grapevines in France (Comont et al. 2016) and apple in Uruguay (Delgado-Cerrone et al. 2016). Jabbari Firoozjah et al. (2015) also reported *D. intermedia* in medlar (*Mespilus germanica* L.) trees in Iran. Based on our knowledge, this is the first time that *D. intermedia* has been found on *G. caspica* and *F. orientalis*.

In the present work, Do. sarmentorum was obtained for the first time from Q. castaneifolia and A. glutinosa. Previous studies have shown that Do. sarmentorum is a plurivorous species in the family Botryosphaeriaceae and has been found associated with 34 different forest and fruit tree species worldwide (Phillips et al. 2013). Recently, Do. sarmentorum has also been isolated and reported from some conifers (Ch. lawsoniana and C. atlantica) and angiosperm (Aesculus hippocastanum L.) plants in the Western Balkans (Zlatkovic' et al. 2016). In a study conducted on *Dothiorella* species in Italy, this fungus as the dominant species of *Bot*ryosphaeriaceae has been reported from Ulmus minor Mill., Salix sp., Ulmus sp., Cornus sanguinea L., Euonymus europaeus L., Paliurus spina-christi Mill. and Coronilla emerus L. (Dissanayake et al. 2016). This fungus previously been reported from fruit and ornamental trees such as Ulmus carpinifolia Gled. (Hashemi et al. 2017), P. nigra (Hashemi

and Mohammadi 2016), *C. oblonga* and adult beetles of *Osphranteria coerulescens* Redt. (Mohammadi and Sharifi 2016) in Iran, and results of this study showed that *Do. sarmentorum* can also infect *Q. castaneifolia* and *A. glutinosa* in this country.

Neoscytalidium novaehollandiae was obtained from three woody hosts, A. glutinosa, C. betulus and F. orientalis. Neoscytalidium novaehollandiae was first isolated from asymptomatic branches of some endemic trees, including Acacia synchronica Maslin, Adansonia gibbosa (A. Cunn.) Guymer ex D.A. Baum, Crotalaria medicaginea Lam. and Grevillea agrifolia A. Cunn. ex R.Br., in Western Australia, and described by Pavlic et al. (2008). This fungus has been reported as a pathogen of Mangifera indica L. in Australia (Ray et al. 2010). This species has been isolated from the beetle galleries of Ulmus densa Litv. stems in China (Zhu and Liu 2012). Recently, N. novaehollandiae has also been isolated and reported from Orchid in Thailand (Huang et al. 2016). This work represents the first report of this species on A. glutinosa, C. betulus and F. orientalis worldwide.

Eleven isolates of *Do. plurivora* were obtained in this study. Of these, four isolates (36.4%) were isolated from branches of *D. lotus*, *Q. castaneifolia* and *A. glutinosa*. This taxon was recently reported from *Citrus* sp., *Casuarina equisetifolia* L., *Malus domestica* Borkh., *Prunus armeniaca* L., *Eucalyptus* sp. and *C. sempervirens* in Southern Iran and *Juglans regia* L., *M. domestica*, *P. armeniaca* and *Vitis vinifera* L. in Spain (Abdollahzadeh et al. 2014). This fungus is also reported here for the first time from branches of three forest trees, *D. lotus*, *Q. castaneifolia* and *A. glutinosa*, in the world.

Neofusicoccum parvum was another species of Botryosphaeriaceae which was recovered from three forest tree species in this work. This species is a cosmopolitan species on diverse plant species and reported as an aggressive pathogen on different trees (Urbez-Torres and Gubler 2009; Inderbitzin et al. 2010; Zlatkovic´ et al. 2016). According to Phillips et al. (2013), this species has been found associated with many ornamental, forest and plantation trees worldwide. This species is one of the most virulent *Botryosphaeriaceae* species on grapevine (Van Niekerk et al. 2004; Úrbez-Torres and Gubler 2009) and a common trunk pathogen of pome and stone fruit trees (Slippers et al. 2007). In Iran, N. parvum has been isolated and reported from V. vinifera (Mohammadi et al. 2013), stone and pome fruit trees (Abdollahzadeh et al. 2013b; Soltaninejad et al. 2017), J. regia (Abdollahzadeh et al. 2013b), pistachio (Mohammadi et al. 2015) and some forest and ornamental trees such as C. sempervirens (Mohammadi et al. 2014) and *Salix* sp. (Abdollahzadeh et al. 2013b). This is the first time the species has been reported on A. glutinosa, P. persica and C. betulus.

Lasiodiplodia mahajangana was described for the first time from healthy branches of Terminalia catappa L. in Mahajanga, Madagascar (Begoude et al. 2010). However, since then this species has been isolated and reported from other plants such as Euphorbia ingens E. Mey. showing dieback symptoms in South Africa and A. gibbosa in Australia (van der Linde et al. 2011). Our results in this study indicated that this species can infect P. fraxinifolia, Q. castaneifolia, Z. carpinifolia and U. carpinifolia in forest areas in the north of Iran. Therefore, these woody trees are reported here as new hosts for this pathogen. In addition, L. mahajangana has not previously been reported from Iran and this study is the first report of this species in this country. In Iran, field studies and pathogenicity tests have shown clear evidence that Botryosphaeriaceae species are the main fungal trunk pathogens on ecologically and economically significant agricultural and urban trees (Mohammadi et al. 2013; Mohammadi 2014; Mohammadi et al. 2015; Hashemi and Mohammadi 2016; Mohammadi and Sharifi 2016; Hashemi et al. 2017; Soltaninejad et al. 2017).

Aside from internal wood infections, our study showed that some species of Botryosphaeriaceae were also present on surfaces of plant debris. Fruiting structures of six Botryosphaeriaceae species were detected from wood debris of 12 tree species in the seven forest regions. Except for N. parvum, D. intermedia and Do. sarmentorum, the other six species were isolated from wood debris of forest trees in the north of Iran. Similar results were reported in previous studies conducted on forest, fruit and grapevine debris. Botryosphaeriaceae species are common in nature and survive well on woody debris (Santini et al. 2008). Several studies have confirmed that Botryosphaeriaceae species associated with trunk diseases of grapevine were occurred saprophytically in pruning debris left in the vineyards (Hewitt and Pearson 1988; van Niekerk et al. 2003, 2004, 2010). Several species in the family Botryosphaeriaceae have been isolated and reported from pruning and woody debris. For example, Diplodia sapinea (Fr.) Fuckel has been isolated and identified from pycnidia on the bark of pruning debris of Prunus spp. in South Africa by Damm et al. (2007). Pérez et al. (2008) showed that *N. parvum* can survive and sporulate on Eucalyptus grandis W. Hill ex Maiden. debris. This species associated with Sphaeropsis porosa (Van Niekerk & Crous) A.J.L. Phillips & A. Alves were also isolated and reported from grapevine pruning debris in South Africa (van Niekerk et al. 2003, 2004). Therefore, plant debris as a major source of inoculum plays a role in the development and overwintering of these pathogens in gardens and forest areas. In northern Iran, due to high humidity and forest tree species diversity, the presence of fruiting bodies of Botryosphaeriaceae species on the plant debris and dead branches can be a very important primary inoculum source to infect trees.

The pathogenic ability of nine species of *Botryospha-eriaceae* on six forest tree species in the north of Iran showed that most of the identified species were pathogenic.

The results of our study showed significant differences in the degree of virulence within and between inoculated species, which is consistent with results in previous pathogenicity studies of various Botryosphaeriaceae species on grapevine (Úrbez-Torres and Gubler 2009; Amponsah et al. 2011; Ammad et al. 2014). Pathogenicity tests in this study showed that N. novaehollandiae, B. dothidea and D. intermedia are more aggressive than the other species. On branches of A. glutinosa, P. fraxinifolia, P. persica and M. germanica species of N. novaehollandiae gave the longest lesions and were the most virulent species on these hosts. Pavlic et al. (2008) recently described *N. novaehollandiae* as an endophyte of *G*. agrifolia, A. gibbosa, A. synchronica and C. medicaginea in north-western Australia. This fungus has been recognized as the main cause of mango dieback in the north, northwest of Australia (Ray et al. 2010). The high degree of aggressiveness observed in this study for N. novaehollandiae is consistent with the findings reported by Sakalidis et al. (2011) and Ray et al. (2010) on mango stems in Australia.

On P. granatum and Q. castaneifolia, two species of B. dothidea and D. intermedia were the most virulent species, respectively. Diplodia intermedia has been described in 2012, and currently, little studies have been done on the pathogenicity of this species. It has been reported as an aggressive pathogen on fruit and branches of mango in the Kimberley Region of Western Australia (Sakalidis et al. 2011) and excised mango stems in Australia (Ray et al. 2010). On the contrary, Comont et al. (2016) found it to be weakly pathogenic on grapevine in France. Among the nine Botryosphaeriaceae species tested on trees, the least aggressive was D. seriata. In this study, the pathogenicity of this species on inoculated forest trees was unclear. On branches of P. granatum, P. fraxinifolia, P. persica and M. germanica, both isolates of D. seriata produced lesions not significantly different from the controls. On branches of A. glutinosa, D. seriata isolates could be considered pathogenic, as their lesion lengths were significantly longer than the control treatments. On branches of Q. castaneifolia, one isolate of D. seriata was pathogenic, while the other isolate failed to produce significantly longer lesions than the negative controls. Overall, our results are in accordance with findings reported by other researchers who have been working on the pathogenicity of this species on different plants. Previous studies indicated that this species ranged from weakly to strongly virulent pathogen on woody plants. This taxon is regarded as an important pathogen on apple in the USA (Brown and Britton 1986, Brown-Rytlewski and McManus 2000), grapevine in California (Urbez-Torres and Gubler 2009), Iran (Mohammadi et al. 2013), Chile (Auger et al. 2004), South Africa (van Niekerk et al. 2004) and Australia (Savocchia et al. 2007), as a weak pathogen on apple in England and New Zealand (Laundon 1973), quince trees in Iran (Mohammadi and Sharifi 2016), almond (Inderbitzin et al. 2010), olive (Moral et al. 2010), English walnut (Chen et al. 2014a) and pistachio (Chen et al. 2014b) in California, poplar in Iran (Hashemi and Mohammadi 2016) and nonpathogenic to grapevines in Western Australia (Taylor et al. 2005) and willow trees in Iran (Hashemi and Mohammadi 2016). Soltaninejad et al. (2017) also showed D. seriata to be pathogenic to apricot and cherry and nonpathogenic to peach, sour cherry and green gage. The interaction between fungal pathogens and their plant hosts is extremely complex. Therefore, these differences may be due to variations in virulence between species, genetic variability of the isolates, and differences in susceptibility and age of tree species. During this research, two isolates of B. dothidea and D. sapinea obtained from wood debris of trees also were pathogenic on inoculated trees. Similar outcomes were also reported for N. parvum, B. dothidea, D. seriata (Arabnezhad and Mohammadi 2013) and S. porosa (van Niekerk et al. 2004) on grapevine. Therefore, our results suggest that wood debris could act as a longlasting inoculum source for these pathogens under forest conditions. Our work indicates that Botryosphaeriaceae species are common and widespread on various forest trees in the north of Iran. Most species of Botryosphaeriaceae reported in this study had previously been reported to be pathogenic or potentially pathogenic to agricultural crops (Mohammadi et al. 2013; Mohammadi 2014; Mohammadi et al. 2015; Mohammadi and Sharifi 2016; Soltaninejad et al. 2017) and ornamental trees (Mohammadi et al. 2014; Hashemi and Mohammadi 2016; Hashemi et al. 2017) in Iran, as well as in other countries, which show the capability of them to occupy a wide range of plant species and geographic areas. Although it is not clear whether D. seriata is a pathogen on some forest trees, there are reports of this species associated with serious trunk diseases on fruit (Mohammadi and Sharifi 2016; Soltaninejad et al. 2017) and ornamental (Hashemi and Mohammadi 2016) trees in Iran and other countries in the world (van Niekerk et al. 2004; Damm et al. 2007). Therefore, due to the diversity of trees in the northern forests of Iran, this fungus like the other *Botryosphaericeae* species may be a serious threat to other forest trees in this country. The distribution of Botryosphaeriaceae species in Guilan Province and their common association with trunk disease symptoms suggest that they could be contributing to decline of forest trees in other areas in the north of Iran. Further research is required to completely investigate the role of Botryosphaeriaceae species in the decline of forest trees in Iran.

Acknowledgements This research was supported by the Grant Number 93027879 from Iran National Science Foundation (INSF), Iran. We

would like to thank Jafar Abdollahzadeh (University of Kurdistan, Iran) for phylogenetic analysis.

References

- Abdollahzadeh J, Goltapeh EM, Javadi A, Shams-Bakhsh M, Zare R, Phillips AJL (2009) *Barriopsis iraniana* and *Phaeobotryon cupressi*: two new species of the *Botryosphaeriaceae* from trees in Iran. Persoonia 23:1–8
- Abdollahzadeh J, Javadi A, Mohmammadi Goltapeh E, Zare R, Phillips AJL (2010) Phylogeny and morphology of four new species of Lasiodiplodia from Iran. Persoonia 25:1–10
- Abdollahzadeh J, Hosseini F, Javadi A (2013a) New records from Botryosphaeriaceae for mycobiota of Iran. Mycol Iran 1:34–41
- Abdollahzadeh J, Zare R, Phillips AJL (2013b) Phylogeny and taxonomy of *Botryosphaeria* and *Neofusicoccum* species in Iran, with description of *Botryosphaeria scharifii* sp. nov. Mycologia 105:210–220
- Abdollahzadeh J, Javadi A, Zare R, Phillips AJL (2014) A phylogenetic study of *Dothiorella* and *Spencermatinsia* species associated with woody plants in Iran, New Zealand, Portugal and Spain. Persoonia 32:1–12
- Acimović SG, Harmon CL, Bec S, Wyka S, Broders K, Doccola JJ (2016) First report of *Diplodia corticola* causing decline of red oak (*Quercus rubra*) trees in Maine. Plant Dis 100:649
- Adamson K, Klavina D, Drenkhan R, Gaitnieks T, Hanso M (2015) Diplodia sapinea is colonizing the native Scots pine (Pinus sylvestris) in the northern Baltics. Eur J Plant Pathol 143:343–350
- Alves A, Correia A, Luque J, Phillips AJL (2004) Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia 96:598–613
- Alves A, Correia A, Phillips AJL (2006) Multi-gene genealogies and morphological data support *Diplodia cupressi* sp. nov., previously recognized as *D. pinea* f. sp. *cupressi*, as a distinct species. Fungal Divers 23:1–15
- Alves A, Crous PW, Correia A, Phillips AJL (2008) Morphological and molecular data reveal cryptic speciation in *Lasiodiplodia theobromae*. Fungal Divers 28:1–13
- Alves A, Barradas C, Phillips AJL, Correia A (2013) Diversity of *Bot-ryosphaeriaceae* species associated with conifers in Portugal. Eur J Plant Pathol 135(4):791–804
- Ammad F, Benchabane M, Toumi M, Belkacem N, Guesmi A, Ameur C, Lecomte P, Merah O (2014) Occurrence of *Botryosphaeriaceae* species associated with grapevine dieback in Algeria. Turk J Agric For 38:865–876
- Amponsah NT, Jones EE, Ridgway HJ, Jaspers MV (2011) Identification, potential inoculum sources and pathogenicity of botryosphaeriaceous species associated with grapevine dieback disease in New Zealand. Eur J Plant Pathol 131:467–482
- Arabnezhad M, Mohammadi H (2013) Detection of *Phaeoacremonium* tuscanum and *Botryosphaeriaceae* species associated with grape-vine decline in Iran and the potential role of pruning debris on the survival of the pathogens. Iran J Plant Pathol 49(4):139–148
- Auger J, Esterio M, Ricke G, Perez I (2004) Black dead arm and basal canker of *Vitis vinifera* cv. Red Globe caused by *Botryosphaeria obtusa* in Chile. Plant Dis 88:1286
- Begoude BAD, Slippers B, Wingfield MJ, Roux J (2010) *Botryosphaeriaceae* associated with *Terminalia catappa* in Cameroon, South Africa and Madagascar. Mycol Prog 9:101–123
- Brown EA, Britton KO (1986) Botryosphaeria diseases of apples and peach in the southeastern United States. Plant Dis 70:480–484
- Brown-Rytlewski DE, McManus PS (2000) Virulence of *Botry-osphaeria dothidea* and *Botryosphaeria obtusa* on apple

- and management of stem cankers with fungicides. Plant Dis 84:1031-1037
- Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553-556
- Černý K, Pešková V, Soukup F, Havrdová L, Strnadová V, Zahradník D, Hrabětová M (2016) Gemmamyces bud blight of *Picea pungens*: a sudden disease outbreak in Central Europe. Plant Pathol 65:1267–1278
- Chen SF, Pavlic D, Roux J, Slippers B, Xie YJ, Wingfield MJ, Zhou XD (2011) Characterization of *Botryosphaeriaceae* from plantation-grown *Eucalyptus* species in South China. Plant Pathol 60:739–751
- Chen SF, Morgan D, Hasey JK, Anderson K, Michailides TJ (2014a) Phylogeny, morphology, distribution, and pathogenicity of *Botryosphaeriaceae* and *Diaporthaceae* from English walnut in California. Plant Dis 98:636–652
- Chen SF, Morgan DP, Michailides TJ (2014b) *Botryosphaeriaceae* and *Diaporthaceae* associated with panicle and shoot blight of pistachio in California, USA. Fungal Divers 67:157–179
- Comont G, Mayet V, Corio-Costet MF (2016) First report of Lasiodiplodia viticola, Spencermartinsia viticola and Diplodia intermedia associated with Vitis vinifera decline in French vineyards. Plant Dis 100(11):2328
- Crockatt ME, Pierce GI, Camden RA, Newell PM, Boddy L (2008) Homokaryons are more combative than heterokaryons of *Hericium coralloides*. Fungal Ecol 1:40–48
- Damm U, Crous PW, Fourie PH (2007) *Botryosphaeriaceae* as potential pathogens of *Prunus* species in South Africa, with descriptions of *Diplodia africana* and *Lasiodiplodia plurivora* sp. nov. Mycologia 99:664–680
- Dar MA, Rai MK (2014) *Cytospora castanae* sp. nov., associated with perennial cankers of *Castanea sativa*. Mycosphere 5(6):747–758. https://doi.org/10.5943/mycosphere/5/6/5
- Davidson RW, Lorenz RC (1938) Species of *Eutypella* and *Schizoxylon* associated with cankers of maple. Phytopathology 28:733–745
- De Wet J, Slippers B, Preisig O, Wingfield BD, Wingfield MJ (2008) Phylogeny of the *Botryosphaeriaceae* reveals patterns of host association. Mol Phylogenet Evol 46:116–126
- Delgado-Cerrone L, Mondino-Hintz P, Alaniz-Ferro S (2016) Botryosphariaceae species associated with stem canker, die-back and fruit rot on apple in Uruguay. Eur J Plant Pathol 146:637–655
- Dissanayake AJ, Phillips AJL, Li XH, Hyde KD (2016) *Botryosphaeriaceae*: current status of genera and species. Mycosphere 7:1001–1073
- Dreaden TJ, Shin K, Smith JA (2011) First report of *Diplodia corti*cola causing branch cankers on live oak (*Quercus virginiana*) in Florida. Plant Dis 95:1027
- Encinas M (2001) Association of *Diplodia mutila* with blue stain of Caribbean pine in Venezuela. Forest Pathol 31:187–189
- Farr DF, Rossman AY (2013) Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. nt.ars-grin.gov/funga ldatabases. Accessed 21 Dec 2013
- Flowers J, Hartman J, Vaillancourt L (2003) Detection of latent *Sphaeropsis sapinea* infections in Austrian pine tissues using nested polymerase chain reaction. Phytopathology 93:1471–1477
- Giambra S, Piazza G, Alves A, Mondello V, Berbegal M, Armengol J, Burruano S (2016) *Botryosphaeriaceae* species associated with diseased loquat trees in Italy and description of *Diplodia rosacearum* sp. nov. Mycosphere 7:978–989
- Gibson IAS (1979) Diseases of forest trees widely planted as exotics in the tropics and Southern Hemisphere. Part II. The genus Pinus. Commonwealth Mycology Institute, Surrey
- Hall T (2006) Bioedit 7.5.0.3. Department of Microbiology, North Carolina State University. Retrieved from http://www.mbio.ncsu. edu/BioEdit/Bioedit.html. Accessed 20 Feb 2013

- Halliwell RS (1966) Association of *Cephalosporium* with a decline of oak in Texas. Plant Dis Rep 50:75–78
- Hashemi H, Mohammadi H (2016) Identification and characterization of fungi associated with internal wood lesions and decline disease of willow and poplar trees in Iran. Forest Pathol 46:341–352
- Hashemi H, Mohammadi H, Abdollahzadeh J (2017) Symptoms and fungi associated with elm trees decline in Iran. Eur J Forest Res 136(5–6):857–879
- Hausner G, Eyjólfsdóttir G, Reid J (1992) Two additional species of the genus *Togninia*. Can J Bot 70:724–734
- Henriques J, Nóbrega F, Sousa E, Lima A (2014) Diversity of Biscogniauxia mediterranea within single stromata on cork oak. J Mycol. https://doi.org/10.1155/2014/324349
- Hewitt WB, Pearson RC (1988) Diplodia Cane Dieback and Bunch Rot. In: Pearson RC, Goheen AC (eds) Compendium of Grape Diseases. APS Press, MN, pp 25–26
- Hinds TE (1981) Cryptosphaeria canker and Libertella decay of aspen. Phytopathology 71:1137–1145
- Huang SK, Tangthirasunun N, Phillips AJL, Dai DQ, Wanasinghe DN, Wen TC, Bahkali AH, Hyde KD, Kang JC (2016) Morphology and phylogeny of *Neoscytalidium orchidacearum* sp. nov. (*Botryosphaeriaceae*). Mycobiology 44(2):79–84
- Inderbitzin P, Bostock RM, Trouillas FP, Michailides TJ (2010) A six locus phylogeny reveals high species diversity in *Botryospha-eriaceae* from California almond. Mycologia 102:1350–1368
- Jabbari Firoozjah M, Mohammadi H, Banihashemi Z (2015) First report of *Eutypella vitis* associated with persimmon trees in Iran. Plant Dis 99:1181
- Jami F, Slippers B, Wingfield MJ, Gryzenhout M (2013) Botryosphaeriaceae diversity greater in healthy than associated diseased Acacia karroo tree tissue. Australas Plant Pathol 42:421–430
- Jankovský L, Palovćiková D (2003) Dieback of Austrian pine—the epidemic occurrence of Sphaeropsis sapinea in southern Moravia. J For Sci 49:389–394
- Jurc D, Ogris N (2006) First reported outbreak of charcoal disease caused by *Biscogniauxia mediterranea* on Turkey oak in Slovenia. Plant Pathol 55:299
- Jurc D, Ogris N, Slippers B, Stenlid J (2006) First report of Eutypella canker of *Acer pseudoplatanus* in Europe. Plant Pathol 55:577
- Karadžić D, Stojadinović B (1988) Prilog poznavanju gljive *Sphaeropsis sapinea* Dyko & Sutton sa posebnim osvrtom na životni ciklus. Šumarstvo 5–6:17–27
- Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780
- Kazemzadeh Chakusary M, Mohammadi H, Khodaparast A (2017) Decline-associated *Phaeoacremonium* spp. occurring on forest trees in the north of Iran. Forest Pathol 47(6):e12368. https://doi. org/10.1111/efp.12368
- Laundon GF (1973) Botryosphaeria obtusa, B. stevensii and Otthia spiraeae in New Zealand. Trans Brit Mycol Soc 6:369–374
- Lazzizera C, Frisullo S, Alves A, Lopes J, Phillips AJL (2008) Phylogeny and morphology of *Diplodia* species on olives in southern Italy and description of *Diplodia olivarum* sp. nov. Fungal Divers 31:63–71
- Linaldeddu B, Scanu B, Maddau L, Franceschini A (2011) *Diplodia africana* causing dieback disease on *Juniperus phoenicea*: a new host and first report in the Northern Hemisphere. Phytopathol Mediterr 50:473–477
- Linaldeddu BT, Franceschini A, Alves A, Phillips AJL (2013) Diplodia quercivora sp. nov.: a new species of Diplodia found on declining Quercus canariensis trees in Tunisia. Mycologia 105:1266–1274
- Linaldeddu BT, Scanu B, Maddau L, Franceschini A (2014) *Diplodia corticola* and *Phytophthora cinnamomi*: the main pathogens involved in holm oak decline on Caprera Island (Italy). For Pathol 44:191–200

- Linaldeddu BT, Deidda A, Scanu B, Franceschini A, Serra S, Berraf-Tebbal A, Zouaoui Boutiti M, Ben Jamâa ML, Phillips AJL (2015) Diversity of *Botryosphaeriaceae* species associated with grapevine and other woody hosts in Italy, Algeria and Tunisia, with descriptions of *Lasiodiplodia exigua* and *Lasiodiplodia mediterranea* sp. nov. Fungal Divers 71:201–214
- Linaldeddu BT, Alves A, Phillips AJL (2016) Sardiniella urbana gen. et sp. nov., a new member of the Botryosphaeriaceae isolated from declining Celtis australis trees in Sardinian streetscapes. Mycosphere 7(7):893–905. https://doi.org/10.5943/mycosphere/si/1b/5
- Linaldeddu BT, Maddau L, Franceschini A (2017) First report of Diplodia corticola causing canker and dieback of Quercus ilex, Q. petraea and Q. suber in Corsica (France). Plant Dis 101:256
- Liu J-K, Phookamsak R, Doilom M, Wikee S, Li Y-M et al (2012) Towards a natural classification of *Botryosphaeriales*. Fungal Divers 57:149–210
- Luchi N, Longa O, Danti R, Capretti P, Maresi G (2014) *Diplodia sapinea*: the main fungal species involved in the colonization of pine shoots in Italy. For Pathol 44:372–381
- Luchi N, Capretti L, Feducci M, Vannini A, Ceccarelli B, Vettraino AM (2015) Latent infection of *Biscogniauxia nummularia* in *Fagus sylvatica*: a possible bioindicator of beech health conditions. iForest. https://doi.org/10.3832/ifor1436-008
- Luque J, Martos S, Phillips AJL (2005) Botryosphaeria viticola sp. nov. on grapevines: a new species with a Dothiorella anamorph. Mycologia 97:1111–1121
- Machado AR, Pinho DB, Pereira OL (2014) Phylogeny, identification and pathogenicity of the *Botryosphaeriaceae* associated with collar and root rot of the biofuel plant *Jatropha curcas* in Brazil, with a description of new species of *Lasiodiplodia*. Fungal Divers 67:231–247
- Marques MW, Lima NB, de Morais MA, Jr Michereff SJ, Phillips AJL, Camara MPS (2013) *Botryosphaeria*, *Neofusicoccum*, *Neoscytalidium* and *Pseudofusicoccum* species associated with mango in Brazil. Fungal Divers 61:195
- Mayorquin JS, Eskalen A, Downer AJ, Hodel DR, Liu A (2012) First report of multiple species of the *Botryosphaeriaceae* causing bot canker disease of Indian laurel-leaf fig in California. Plant Dis 96:459
- Mehl JWM, Slippers B, Roux J, Wingfield MJ (2011) *Botryosphaeriaceae* associated with *Pterocarpus angolensis* (kiaat) in South Africa. Mycologia 103:534–553
- Milijašević T (2003) The most frequent parasitic and saprophytic fungi on some species in the fam. *Cupressaceae*. Bull Fac For 87:161–173 (in Serbian with English summary)
- Milijašević T (2009) The effect of *Sphaeropsis sapinea* on conifer decline in Serbia and Montenegro. Works Fac For Univ Sarajevo 1:35–51 (in Serbian with English summary)
- Mirabolfathy M (2013) Outbreak of charchoal diseaseon *Quercus* spp. and *Zelkova carpinifolia* trees forests Zagros and Alborz mountains in Iran. Iran J Plant Pathol 49:77–79
- Mirabolfathy M, Groenewald JZ, Crous PW (2011) The occurrence of charcoal disease caused by *Biscogniauxia mediterranea* on chestnut-leaved oak (*Quercus castaneifolia*) in the Golestan Forests of Iran. Plant Dis 95(7):876
- Mohali S, Slippers B, Wingfield MJ (2006) Two new *Fusicoccum* species from *Acacia* and *Eucalyptus* in Venezuela, based on morphology and DNA sequence data. Mycol Res 110:405–413
- Mohammadi H (2014) *Phaeoacremonium* spp. and *Botryosphaeriaceae* spp. associated with date palm (*Phoenix dactylifera* L.) decline in Iran. J Phytopathol 162:575–581
- Mohammadi H, Sharifi S (2016) Association of *Botryosphaeriaceae* and *Phaeoacremonium* species with insect-damaged quince shoots. J Plant Pathol 98(1):31–38

- Mohammadi H, Banihashemi Z, Gramaje D, Armengol J (2013) Characterization of *Diplodia seriata* and *Neofusicoccum par-vum* associated with grapevine decline in Iran. J Agric Sci Technol 15:603–616
- Mohammadi H, Kazemi S, Farahmand H (2014) *Phaeoacremonium* and *Botryosphaeriaceae* species associated with cypress (*Cupressus sempervirens* L.) decline in Kerman province (Iran). Phytopathol Mediterr 53(1):27–39
- Mohammadi H, Sarcheshmehpour M, Mafi E (2015) Fungal trunk pathogens associated with wood decay of pistachio trees in Iran. Span J Agric Res 13(2):1007. https://doi.org/10.5424/sjar/2015132-6560
- Moral J, Muñoz-Díez C, González N, Trapero A, Michailides TJ (2010) Characterization and pathogenicity of *Botryosphaeriaceae* species collected from olive and other hosts in Spain and California. Phytopathology 100:1340–1351
- Mostert L, Groenewald JZ, Summerbell RC, Gams W, Crous PW (2006) Taxonomy and pathology of *Togninia (Diaporthales)* and its *Phaeoacremonium* anamorphs. Stud Mycol 54:1–115
- Munck IA, Wyka SA, Bohne MJ, Green WJ, Siegert NW (2017) First report of *Diplodia corticola* causing bleeding cankers on black oak (*Quercus velutina*). Plant Dis 101:257
- Nugent L, Sihanonth P, Thienhirun S, Whalley A (2005) *Biscogniauxia*: a genus of latent invaders. Mycologist 19(1):40–43. https://doi.org/10.1017/S0269915X05001060
- Palmer MA, Stewart EL, Wingfield MJ (1987) Variation among isolates of *Sphaeropsis sapinea* in North Central United States. Phytopathology 77:944–948
- Pavlic D, Wingfield MJ, Barber P, Slippers B, Hardy GESTJ, Burgess TI (2008) Seven new species of the *Botryosphaeriaceae* from baobab and other native trees in Western Australia. Mycologia 100:851–866
- Pavlic D, Slippers B, Coutinho TA, Wingfield MJ (2009) Multiple gene genealogies and phenotypic data reveal cryptic species of the *Botryosphaeriaceae*: a case study on the *Neofusicoccum* parvum/N. ribis complex. Mol Phylogenet Evol 51(2):259–268
- Pavlic-Zupanc D, Wingfielda MJ, Boissinc E, Slippers B (2015) The distribution of genetic diversity in the *Neofusicoccum* parvum/N ribis complex suggests structure correlated with level of disturbance. Fungal Ecol 13:93e102
- Pérez CA, Altier N, Simeto S, Wingfield MJ, Slippers B, Blanchette RA (2008) *Botryosphaeriaceae* from Eucalyptus and native *Myrtaceae* in Uruguay. Agrociencia 12:19–30
- Pérez CA, Wingfield MJ, Slippers B, Altier NA, Blanchette RA (2010) Endophytic and canker-associated *Botryosphaeriaceae* occurring on non-native Eucalyptus and native *Myrtaceae* trees in Uruguay. Fungal Divers 41:53–69
- Phillips AJL (2000) Excoriose, cane blight and related diseases of grapevines: a taxonomic review of the pathogens. Phytopathol Mediterr 39(3):341–346
- Phillips AJL (2006) The *Botryosphaeria* site. http://www.crem.fct. unl.pt/botryosphaeria_site. Accessed 9 April 2014
- Phillips A, Alves A, Correia A, Luque J (2005) Two new species of *Botryosphaeria* with brown, 1-septate ascospores and *Dothiorella* anamorphs. Mycologia 97:513–529
- Phillips AJL, Oudemans PV, Correia A, Alves A (2006) Characterization and epitypification of *Botryosphaeria corticis*, the cause of blueberry cane canker. Fungal Divers 21:141–155
- Phillips AJL, Alves A, Pennycook SR, Johnston PR, Ramaley A, Akulov A, Crous PW (2008) Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the *Botryosphaeriaceae*. Persoonia 21:29–55
- Phillips AJL, Lopes J, Abdollahzadeh J, Bobev S, Alves A (2012) Resolving the *Diplodia* complex on apple and other *Rosaceae* hosts. Persoonia 29:29–38

- Phillips AJL, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW (2013) The *Botryosphaeriaceae*: genera and species known from culture. Stud Mycol 76:51–167
- Piškur B, Pavlic D, Slippers B, Ogris N, Maresi G, Wingfield MJ, Jurc D (2011) Diversity and pathogenicity of *Botryosphaeriaceae* on declining *Ostrya carpinifolia* in Slovenia and Italy following extreme weather conditions. Eur J For Res 130:235–249
- Prieto-Recio C, Romeralo C, Bezos D, Martín-García J, Martínez-Álvarez P, Botella L, Diez JJ (2012) First report of *Heterobasidion annosum* on *Pinus pinaster* in Spain. Plant Dis 96:770. https://doi.org/10.1094/PDIS-10-11-0890-PDN
- Punithalingam E, Waterston JM (1970) *Diplodia pinea*. Commonw Mycol Inst Descr Pathog Fungi Bact 273:2
- Quaglia M, Moretti C, Buonaurio R (2014) Molecular characterization of *Diplodia seriata*, a new pathogen of *Prunus laurocerasus* in Italy. Phytoparasitica 42:189
- Ray JD, Lanoiselet V, Burgess TI (2010) First record of Neoscytalidium dimidiatum and Neoscytalidium novaehollandiae on Mangifera indica and Ficus carica in Australia. Australas Plant Dis Notes 5:48–50
- Réblová M (2011) New insights into the systematics and phylogeny of the genus *Jattaea* and similar fungi of the *Calosphaeriales*. Fungal Divers 49:167–198
- Réblová M, Mostert L (2007) *Romellia* is congeneric with *Togninia*, and description of *Conidiotheca* gen. nov. for one species of this genus with polysporous asci. Mycol Res 111:299–307
- Reed SE, English JT, Lalk SR, Tosie KM (2018) First report of *Diplodia corticola* causing stem and branch cankers on white oak (*Quercus alba*) in Missouri, U.S.A. Plant Dis 102(12):2657
- Ryvarden L, Gilbertson RL (1993) European polypores. Synop Fungorum 6:1–387
- Sakalidis ML, Ray JD, Lanoiselet V, Hardy GES, Burgess TI (2011) Pathogenic *Botryosphaeriaceae* associated with *Mangifera* indica in the Kimberley region of Western Australia. Eur J Plant Pathol 130:379–391
- Santini A, Pepori A, Ghelardini L, Capretti P (2008) Persistence of some pine pathogens in coarse woody debris and cones in a *Pinus* pinea forest. For Ecol Manag 256:502–506
- Savocchia S, Steel CC, Stodart BJ, Somers A (2007) Pathogenicity of Botryosphaeria species isolated from declining grapevines in subtropical regions of Eastern Australia. Vitis 46:27–32
- Senanayake IC, Maharachchikumbura SN, Hyde KD, Bhat JD, Jones EBG, McKenzie EHC, Dai DQ, Daranagama DA, Dayarathne MC, Goonasekara ID, Konta S, Li WJ, Shang QJ, Stadler M, Wijayawardene NN, Xiao YP, Norphanphoun C, Liu XZ, Bahkali AH, Kang JC, Wang Y, Wen TC, Wendt L, Xu JC, Camporesi E (2015) Towards unraveling relationships in *Xylariomycetidae* (*Sordariomycetes*). Fungal Divers 7373:144
- Sinclair WA, Lyon HH (2005) Diseases of trees and shrubs. Cornell University Press, Ithaca, p 680
- Slippers B, Wingfield MJ (2007) The *Botryosphaeriaceae* as endophytes and latent pathogens of woody plants diversity, ecology and impact. Fungal Biol Rev 21:90–106
- Slippers B, Crous PW, Denman S, Coutinho TA, Wingfield BD, Wingfield MJ (2004) Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as *Botryosphaeria dothidea*. Mycologia 96:83–101
- Slippers B, Smit WA, Crous PW, Coutinho TA, Wingfield BD, Wingfield MJ (2007) Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world. Plant Pathol 56:128–139
- Slippers B, Burgess T, Pavlic D, Ahumada R, Maleme H, Mohali S, Wingfield MJ (2009) A diverse assemblage of *Botryosphaeriaceae* infect Eucalyptus in native and nonnative environments. South For 71:101–110

- Slippers B, Boissin E, Phillips AJL, Groenewald JZ, Lombard L, Wing-field MJ, Postma A, Burgess T, Crous PW (2013) Phylogenetic lineages in the *Botryosphaeriales*: a systematic and evolutionary framework. Stud Mycol 76:31–49
- Smahi H, Belhoucine-Guezouli L, Berraf-Tebbal A, Chouih S, Arkam M, Franceschini A, Linaldeddu BT, Phillips AJL (2017) Molecular characterization and pathogenicity of *Diplodia corticola* and other *Botryosphaeriaceae* species associated with canker and dieback of *Quercus suber* in Algeria. Mycosphere 8(2):1261–1272. https://doi.org/10.5943/mycosphere/8/2/10
- Smith DR, Stanosz GR (2001) Molecular and morphological differentiation of *Botryosphaeria dothidea* (anamorph *Fusicoccum aesculi*) from some other fungi with *Fusicoccum* anamorphs. Mycologia 93:505–515
- Soltaninejad N, Mohammadi H, Massumi H (2017) Isolation, identification and pathogenicity of *Botryosphaeriaceae* and *Phaeoacremonium* species associated with decline of *Prunus* species in Iran. J Plant Pathol 99(3):571–581
- Stanosz GR, Cummings Carlson J (1996) Association of mortality of recently planted seedlings and established saplings in red pine plantations with Sphaeropsis collar rot. Plant Dis 80:750–753
- Swart WJ, Wingfield MJ (1991) Biology and control of *Sphaeropsis* sapinea on *Pinus* species in South Africa. Plant Dis 75:761–766
- Taylor A, Hardy GESTJ, Wood P, Burgess T (2005) Identification and pathogenicity of *Botryosphaeria* species associated with grapevine decline in Western Australia. Australas Plant Pathol 34:187–195
- Úrbez-Torres JR, Gubler WD (2009) Pathogenicity of *Botryosphaeriaceae* species isolated from grapevine cankers in California. Plant Dis 93:584–592
- Urbez-Torres JR, Peduto F, Striegler RK, Urrea-Romero KE, Rupe JC, Cartwright RD, Gubler WD (2012) Characterization of fungal pathogens associated with grapevine trunk diseases in Arkansas and Missouri. Fungal Divers 52(1):169–189
- Úrbez-Torres JR, Peduto F, Rooney-Latham S, Gubler WD (2010) First report of *Diplodia corticola* causing grapevine (*Vitis vinifera*) cankers and trunk cankers and dieback of canyon live oak (*Quercus chrysolepis*) in California. Plant Dis 46(6):785
- Van Der Linde JA, Six DL, Wingfield MJ, Roux J (2011) *Lasiodiplodia* species associated with dying *Euphorbia ingens* in South Africa. South For 73:165–173

- Van Niekerk JM, Crous PW, Fourie PH, Groenewald JZ, Halleen F (2003) Botryosphaeria canker and dieback of grapevines. In: Proceedings of the 8th international congress of plant pathology, 1–2 Feb, Christchurch, New Zealand, p 339
- Van Niekerk JM, Crous PW, Groenewald JZ, Fourie PH, Halleen F (2004) DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines. Mycologia 96:781–798
- Van Niekerk J, Calitz F, Halleen F, Fourie P (2010) Temporal spore dispersal patterns of grapevine trunk pathogens in South Africa. Eur J Plant Pathol 127:375–390
- Wang YL, Lu Q, Jia XZ, Liang J, Zhang XY (2013) First report of branch canker caused by *Cytospora atrocirrhata* on *Populus* sp. and *Salix* sp. in China. Plant Dis 97:426
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplified and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322
- Yang T, Groenewald JZ, Cheewangkoon R, Jami F, Abdollahzadeh J, Lombard L, Crous PW (2017) Families, genera, and species of Botryosphaeriales. Fungal Biol 121(4):322–346
- Young ND, Healy J (2003) GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 4:6
- Zhu XM, Liu XF (2012) A new species and genus distribution record from China: neoscytalidium novaehollandiae. Indian J Microbiol 52(4):565–568
- Zhu HY, Tian CM, Fan XL (2018) Multigene phylogeny and morphology reveal *Cytospora spiraeae* sp. nov., (*Diaporthales*, *Ascomycota*) in China. Phytotaxa 338(1):049–062
- Zlatković M, Wingfield MJ, Jami F, Slippers B (2018) Host specificity of co-infecting *Botryosphaeriaceae* on ornamental and forest trees in the Western Balkans. For Pathol 48(2):e12410. https://doi.org/10.1111/efp.12410
- Zlatković M, Keča N, Wingfield MJ, Jami F, Slippers B (2016) *Botryosphaeriaceae* associated with the die-back of ornamental trees in the Western Balkans. Antonie Van Leeuwenhoek 109(4):543–564

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

